diff options
| author | Johannes Ranke <jranke@uni-bremen.de> | 2021-02-03 16:41:31 +0100 | 
|---|---|---|
| committer | Johannes Ranke <jranke@uni-bremen.de> | 2021-02-03 18:18:19 +0100 | 
| commit | f0ef23a7598e5d19648ae4edc2b74e0fba27a41c (patch) | |
| tree | 03af20e730330e148acf3a7c008d82387dbe52eb /R | |
| parent | 82814b17ec182467c25325d747fffa8ffbe4bb33 (diff) | |
Prepare for v1.0.0v1.0.0
- Improve authorship and copyright information
- Prepare pkgdown config
- Remove dependence on saemix as we need the development version which
is not ready for CRAN
- Temporarily remove saemix interface to check code coverage of the rest
Diffstat (limited to 'R')
| -rw-r--r-- | R/endpoints.R | 8 | ||||
| -rw-r--r-- | R/plot.mixed.mmkin.R | 23 | ||||
| -rw-r--r-- | R/saem.R | 512 | ||||
| -rw-r--r-- | R/summary.saem.mmkin.R | 268 | 
4 files changed, 5 insertions, 806 deletions
diff --git a/R/endpoints.R b/R/endpoints.R index f1f47581..b5872e68 100644 --- a/R/endpoints.R +++ b/R/endpoints.R @@ -10,8 +10,8 @@  #' Additional DT50 values are calculated from the FOMC DT90 and k1 and k2 from  #' HS and DFOP, as well as from Eigenvalues b1 and b2 of any SFORB models  #' -#' @param fit An object of class [mkinfit], [nlme.mmkin] or -#'  [saem.mmkin]. Or another object that has list components +#' @param fit An object of class [mkinfit] or [nlme.mmkin]  +#'  or another object that has list components  #'  mkinmod containing an [mkinmod] degradation model, and two numeric vectors,  #'  bparms.optim and bparms.fixed, that contain parameter values  #'  for that model. @@ -20,8 +20,8 @@  #'   and, if applicable, a vector of formation fractions named ff  #'   and, if the SFORB model was in use, a vector of eigenvalues  #'   of these SFORB models, equivalent to DFOP rate constants -#' @note The function is used internally by [summary.mkinfit], -#'   [summary.nlme.mmkin] and [summary.saem.mmkin]. +#' @note The function is used internally by [summary.mkinfit] +#'   and [summary.nlme.mmkin]  #' @author Johannes Ranke  #' @examples  #' diff --git a/R/plot.mixed.mmkin.R b/R/plot.mixed.mmkin.R index 1674d855..5a0b7412 100644 --- a/R/plot.mixed.mmkin.R +++ b/R/plot.mixed.mmkin.R @@ -2,7 +2,7 @@ utils::globalVariables("ds")  #' Plot predictions from a fitted nonlinear mixed model obtained via an mmkin row object  #' -#' @param x An object of class [mixed.mmkin], [saem.mmkin] or [nlme.mmkin] +#' @param x An object of class [mixed.mmkin], [nlme.mmkin]  #' @param i A numeric index to select datasets for which to plot the individual predictions,  #'   in case plots get too large  #' @inheritParams plot.mkinfit @@ -39,15 +39,6 @@ utils::globalVariables("ds")  #' f_nlme <- nlme(f, control = list(pnlsMaxIter = 120, tolerance = 1e-3))  #' plot(f_nlme)  #' -#' f_saem <- saem(f, transformations = "saemix") -#' plot(f_saem) -#' -#' # We can overlay the two variants if we generate predictions -#' pred_nlme <- mkinpredict(dfop_sfo, -#'   f_nlme$bparms.optim[-1], -#'   c(parent = f_nlme$bparms.optim[[1]], A1 = 0), -#'   seq(0, 180, by = 0.2)) -#' plot(f_saem, pred_over = list(nlme = pred_nlme))  #' }  #' @export  plot.mixed.mmkin <- function(x, @@ -91,18 +82,6 @@ plot.mixed.mmkin <- function(x,        type = ifelse(standardized, "pearson", "response"))    } -  if (inherits(x, "saem.mmkin")) { -    if (x$transformations == "saemix") backtransform = FALSE -    degparms_i <- saemix::psi(x$so) -    rownames(degparms_i) <- ds_names -    degparms_i_names <- setdiff(x$so@results@name.fixed, names(fit_1$errparms)) -    colnames(degparms_i) <- degparms_i_names -    residual_type = ifelse(standardized, "standardized", "residual") -    residuals <- x$data[[residual_type]] -    degparms_pop <- x$so@results@fixed.effects -    names(degparms_pop) <- degparms_i_names -  } -    degparms_fixed <- fit_1$fixed$value    names(degparms_fixed) <- rownames(fit_1$fixed)    degparms_all <- cbind(as.matrix(degparms_i), diff --git a/R/saem.R b/R/saem.R deleted file mode 100644 index fd2a77b4..00000000 --- a/R/saem.R +++ /dev/null @@ -1,512 +0,0 @@ -utils::globalVariables(c("predicted", "std")) - -#' Fit nonlinear mixed models with SAEM -#' -#' This function uses [saemix::saemix()] as a backend for fitting nonlinear mixed -#' effects models created from [mmkin] row objects using the Stochastic Approximation -#' Expectation Maximisation algorithm (SAEM). -#' -#' An mmkin row object is essentially a list of mkinfit objects that have been -#' obtained by fitting the same model to a list of datasets using [mkinfit]. -#' -#' Starting values for the fixed effects (population mean parameters, argument -#' psi0 of [saemix::saemixModel()] are the mean values of the parameters found -#' using [mmkin]. -#' -#' @param object An [mmkin] row object containing several fits of the same -#'   [mkinmod] model to different datasets -#' @param verbose Should we print information about created objects of -#'   type [saemix::SaemixModel] and [saemix::SaemixData]? -#' @param transformations Per default, all parameter transformations are done -#'   in mkin. If this argument is set to 'saemix', parameter transformations -#'   are done in 'saemix' for the supported cases. Currently this is only -#'   supported in cases where the initial concentration of the parent is not fixed, -#'   SFO or DFOP is used for the parent and there is either no metabolite or one. -#' @param degparms_start Parameter values given as a named numeric vector will -#'   be used to override the starting values obtained from the 'mmkin' object. -#' @param solution_type Possibility to specify the solution type in case the -#'   automatic choice is not desired -#' @param quiet Should we suppress the messages saemix prints at the beginning -#'   and the end of the optimisation process? -#' @param control Passed to [saemix::saemix] -#' @param \dots Further parameters passed to [saemix::saemixModel]. -#' @return An S3 object of class 'saem.mmkin', containing the fitted -#'   [saemix::SaemixObject] as a list component named 'so'. The -#'   object also inherits from 'mixed.mmkin'. -#' @seealso [summary.saem.mmkin] [plot.mixed.mmkin] -#' @examples -#' \dontrun{ -#' ds <- lapply(experimental_data_for_UBA_2019[6:10], -#'  function(x) subset(x$data[c("name", "time", "value")])) -#' names(ds) <- paste("Dataset", 6:10) -#' f_mmkin_parent_p0_fixed <- mmkin("FOMC", ds, -#'   state.ini = c(parent = 100), fixed_initials = "parent", quiet = TRUE) -#' f_saem_p0_fixed <- saem(f_mmkin_parent_p0_fixed) -#' -#' f_mmkin_parent <- mmkin(c("SFO", "FOMC", "DFOP"), ds, quiet = TRUE) -#' f_saem_sfo <- saem(f_mmkin_parent["SFO", ]) -#' f_saem_fomc <- saem(f_mmkin_parent["FOMC", ]) -#' f_saem_dfop <- saem(f_mmkin_parent["DFOP", ]) -#' -#' # The returned saem.mmkin object contains an SaemixObject, therefore we can use -#' # functions from saemix -#' library(saemix) -#' compare.saemix(list(f_saem_sfo$so, f_saem_fomc$so, f_saem_dfop$so)) -#' plot(f_saem_fomc$so, plot.type = "convergence") -#' plot(f_saem_fomc$so, plot.type = "individual.fit") -#' plot(f_saem_fomc$so, plot.type = "npde") -#' plot(f_saem_fomc$so, plot.type = "vpc") -#' -#' f_mmkin_parent_tc <- update(f_mmkin_parent, error_model = "tc") -#' f_saem_fomc_tc <- saem(f_mmkin_parent_tc["FOMC", ]) -#' compare.saemix(list(f_saem_fomc$so, f_saem_fomc_tc$so)) -#' -#' sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"), -#'   A1 = mkinsub("SFO")) -#' fomc_sfo <- mkinmod(parent = mkinsub("FOMC", "A1"), -#'   A1 = mkinsub("SFO")) -#' dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"), -#'   A1 = mkinsub("SFO")) -#' # The following fit uses analytical solutions for SFO-SFO and DFOP-SFO, -#' # and compiled ODEs for FOMC that are much slower -#' f_mmkin <- mmkin(list( -#'     "SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo), -#'   ds, quiet = TRUE) -#' # saem fits of SFO-SFO and DFOP-SFO to these data take about five seconds -#' # each on this system, as we use analytical solutions written for saemix. -#' # When using the analytical solutions written for mkin this took around -#' # four minutes -#' f_saem_sfo_sfo <- saem(f_mmkin["SFO-SFO", ]) -#' f_saem_dfop_sfo <- saem(f_mmkin["DFOP-SFO", ]) -#' # We can use print, plot and summary methods to check the results -#' print(f_saem_dfop_sfo) -#' plot(f_saem_dfop_sfo) -#' summary(f_saem_dfop_sfo, data = TRUE) -#' -#' # The following takes about 6 minutes -#' #f_saem_dfop_sfo_deSolve <- saem(f_mmkin["DFOP-SFO", ], solution_type = "deSolve", -#' #  control = list(nbiter.saemix = c(200, 80), nbdisplay = 10)) -#' -#' #saemix::compare.saemix(list( -#' #  f_saem_dfop_sfo$so, -#' #  f_saem_dfop_sfo_deSolve$so)) -#' -#' # If the model supports it, we can also use eigenvalue based solutions, which -#' # take a similar amount of time -#' #f_saem_sfo_sfo_eigen <- saem(f_mmkin["SFO-SFO", ], solution_type = "eigen", -#' #  control = list(nbiter.saemix = c(200, 80), nbdisplay = 10)) -#' } -#' @export -saem <- function(object, ...) UseMethod("saem") - -#' @rdname saem -#' @export -saem.mmkin <- function(object, -  transformations = c("mkin", "saemix"), -  degparms_start = numeric(), -  solution_type = "auto", -  control = list(displayProgress = FALSE, print = FALSE, -    save = FALSE, save.graphs = FALSE), -  verbose = FALSE, quiet = FALSE, ...) -{ -  transformations <- match.arg(transformations) -  m_saemix <- saemix_model(object, verbose = verbose, -    degparms_start = degparms_start, solution_type = solution_type, -    transformations = transformations, ...) -  d_saemix <- saemix_data(object, verbose = verbose) - -  fit_time <- system.time({ -    utils::capture.output(f_saemix <- saemix::saemix(m_saemix, d_saemix, control), split = !quiet) -  }) - -  transparms_optim <- f_saemix@results@fixed.effects -  names(transparms_optim) <- f_saemix@results@name.fixed - -  if (transformations == "mkin") { -    bparms_optim <- backtransform_odeparms(transparms_optim, -      object[[1]]$mkinmod, -      object[[1]]$transform_rates, -      object[[1]]$transform_fractions) -  } else { -    bparms_optim <- transparms_optim -  } - -  return_data <- nlme_data(object) - -  return_data$predicted <- f_saemix@model@model( -    psi = saemix::psi(f_saemix), -    id = as.numeric(return_data$ds), -    xidep = return_data[c("time", "name")]) - -  return_data <- transform(return_data, -    residual = predicted - value, -    std = sigma_twocomp(predicted, -      f_saemix@results@respar[1], f_saemix@results@respar[2])) -  return_data <- transform(return_data, -    standardized = residual / std) - -  result <- list( -    mkinmod = object[[1]]$mkinmod, -    mmkin = object, -    solution_type = object[[1]]$solution_type, -    transformations = transformations, -    transform_rates = object[[1]]$transform_rates, -    transform_fractions = object[[1]]$transform_fractions, -    so = f_saemix, -    time = fit_time, -    mean_dp_start = attr(m_saemix, "mean_dp_start"), -    bparms.optim = bparms_optim, -    bparms.fixed = object[[1]]$bparms.fixed, -    data = return_data, -    err_mod = object[[1]]$err_mod, -    date.fit = date(), -    saemixversion = as.character(utils::packageVersion("saemix")), -    mkinversion = as.character(utils::packageVersion("mkin")), -    Rversion = paste(R.version$major, R.version$minor, sep=".") -  ) - -  class(result) <- c("saem.mmkin", "mixed.mmkin") -  return(result) -} - -#' @export -#' @rdname saem -#' @param x An saem.mmkin object to print -#' @param digits Number of digits to use for printing -print.saem.mmkin <- function(x, digits = max(3, getOption("digits") - 3), ...) { -  cat( "Kinetic nonlinear mixed-effects model fit by SAEM" ) -  cat("\nStructural model:\n") -  diffs <- x$mmkin[[1]]$mkinmod$diffs -  nice_diffs <- gsub("^(d.*) =", "\\1/dt =", diffs) -  writeLines(strwrap(nice_diffs, exdent = 11)) -  cat("\nData:\n") -  cat(nrow(x$data), "observations of", -    length(unique(x$data$name)), "variable(s) grouped in", -    length(unique(x$data$ds)), "datasets\n") - -  cat("\nLikelihood computed by importance sampling\n") -  print(data.frame( -      AIC = AIC(x$so, type = "is"), -      BIC = BIC(x$so, type = "is"), -      logLik = logLik(x$so, type = "is"), -      row.names = " "), digits = digits) - -  cat("\nFitted parameters:\n") -  conf.int <- x$so@results@conf.int[c("estimate", "lower", "upper")] -  rownames(conf.int) <- x$so@results@conf.int[["name"]] -  print(conf.int, digits = digits) - -  invisible(x) -} - -#' @rdname saem -#' @return An [saemix::SaemixModel] object. -#' @export -saemix_model <- function(object, solution_type = "auto", transformations = c("mkin", "saemix"), -  degparms_start = numeric(), verbose = FALSE, ...) -{ -  if (nrow(object) > 1) stop("Only row objects allowed") - -  mkin_model <- object[[1]]$mkinmod - -  degparms_optim <-  mean_degparms(object) -  if (transformations == "saemix") { -    degparms_optim <- backtransform_odeparms(degparms_optim, -      object[[1]]$mkinmod, -      object[[1]]$transform_rates, -      object[[1]]$transform_fractions) -  } -  degparms_fixed <- object[[1]]$bparms.fixed - -  # Transformations are done in the degradation function -  transform.par = rep(0, length(degparms_optim)) - -  odeini_optim_parm_names <- grep('_0$', names(degparms_optim), value = TRUE) -  odeini_fixed_parm_names <- grep('_0$', names(degparms_fixed), value = TRUE) - -  odeparms_fixed_names <- setdiff(names(degparms_fixed), odeini_fixed_parm_names) -  odeparms_fixed <- degparms_fixed[odeparms_fixed_names] - -  odeini_fixed <- degparms_fixed[odeini_fixed_parm_names] -  names(odeini_fixed) <- gsub('_0$', '', odeini_fixed_parm_names) - -  model_function <- FALSE - -  # Model functions with analytical solutions -  # Fixed parameters, use_of_ff = "min" and turning off sinks currently not supported here -  # In general, we need to consider exactly how the parameters in mkinfit were specified, -  # as the parameters are currently mapped by position in these solutions -  sinks <- sapply(mkin_model$spec, function(x) x$sink) -  if (length(odeparms_fixed) == 0 & mkin_model$use_of_ff == "max" & all(sinks)) { -    # Parent only -    if (length(mkin_model$spec) == 1) { -      parent_type <- mkin_model$spec[[1]]$type -      if (length(odeini_fixed) == 1) { -        if (parent_type == "SFO") { -          stop("saemix needs at least two parameters to work on.") -        } -        if (parent_type == "FOMC") { -          model_function <- function(psi, id, xidep) { -            odeini_fixed / (xidep[, "time"]/exp(psi[id, 2]) + 1)^exp(psi[id, 1]) -          } -        } -        if (parent_type == "DFOP") { -          model_function <- function(psi, id, xidep) { -            g <- plogis(psi[id, 3]) -            t <- xidep[, "time"] -            odeini_fixed * (g * exp(- exp(psi[id, 1]) * t) + -              (1 - g) * exp(- exp(psi[id, 2]) * t)) -          } -        } -        if (parent_type == "HS") { -          model_function <- function(psi, id, xidep) { -            tb <- exp(psi[id, 3]) -            t <- xidep[, "time"] -            k1 = exp(psi[id, 1]) -            odeini_fixed * ifelse(t <= tb, -              exp(- k1 * t), -              exp(- k1 * tb) * exp(- exp(psi[id, 2]) * (t - tb))) -          } -        } -      } else { -        if (parent_type == "SFO") { -          if (transformations == "mkin") { -            model_function <- function(psi, id, xidep) { -              psi[id, 1] * exp( - exp(psi[id, 2]) * xidep[, "time"]) -            } -          } else { -            model_function <- function(psi, id, xidep) { -              psi[id, 1] * exp( - psi[id, 2] * xidep[, "time"]) -            } -            transform.par = c(0, 1) -          } -        } -        if (parent_type == "FOMC") { -          model_function <- function(psi, id, xidep) { -            psi[id, 1] / (xidep[, "time"]/exp(psi[id, 3]) + 1)^exp(psi[id, 2]) -          } -        } -        if (parent_type == "DFOP") { -          if (transformations == "mkin") { -            model_function <- function(psi, id, xidep) { -              g <- plogis(psi[id, 4]) -              t <- xidep[, "time"] -              psi[id, 1] * (g * exp(- exp(psi[id, 2]) * t) + -                (1 - g) * exp(- exp(psi[id, 3]) * t)) -            } -          } else { -            model_function <- function(psi, id, xidep) { -              g <- psi[id, 4] -              t <- xidep[, "time"] -              psi[id, 1] * (g * exp(- psi[id, 2] * t) + -                (1 - g) * exp(- psi[id, 3] * t)) -            } -            transform.par = c(0, 1, 1, 3) -          } -        } -        if (parent_type == "HS") { -          model_function <- function(psi, id, xidep) { -            tb <- exp(psi[id, 4]) -            t <- xidep[, "time"] -            k1 = exp(psi[id, 2]) -            psi[id, 1] * ifelse(t <= tb, -              exp(- k1 * t), -              exp(- k1 * tb) * exp(- exp(psi[id, 3]) * (t - tb))) -          } -        } -      } -    } - -    # Parent with one metabolite -    # Parameter names used in the model functions are as in -    # https://nbviewer.jupyter.org/urls/jrwb.de/nb/Symbolic%20ODE%20solutions%20for%20mkin.ipynb -    types <- unname(sapply(mkin_model$spec, function(x) x$type)) -    if (length(mkin_model$spec) == 2 &! "SFORB" %in% types ) { -      # Initial value for the metabolite (n20) must be fixed -      if (names(odeini_fixed) == names(mkin_model$spec)[2]) { -        n20 <- odeini_fixed -        parent_name <- names(mkin_model$spec)[1] -        if (identical(types, c("SFO", "SFO"))) { -          if (transformations == "mkin") { -            model_function <- function(psi, id, xidep) { -              t <- xidep[, "time"] -              n10 <- psi[id, 1] -              k1 <- exp(psi[id, 2]) -              k2 <- exp(psi[id, 3]) -              f12 <- plogis(psi[id, 4]) -              ifelse(xidep[, "name"] == parent_name, -                n10 * exp(- k1 * t), -                (((k2 - k1) * n20 - f12 * k1 * n10) * exp(- k2 * t)) / (k2 - k1) + -                  (f12 * k1 * n10 * exp(- k1 * t)) / (k2 - k1) -              ) -            } -          } else { -            model_function <- function(psi, id, xidep) { -              t <- xidep[, "time"] -              n10 <- psi[id, 1] -              k1 <- psi[id, 2] -              k2 <- psi[id, 3] -              f12 <- psi[id, 4] -              ifelse(xidep[, "name"] == parent_name, -                n10 * exp(- k1 * t), -                (((k2 - k1) * n20 - f12 * k1 * n10) * exp(- k2 * t)) / (k2 - k1) + -                  (f12 * k1 * n10 * exp(- k1 * t)) / (k2 - k1) -              ) -            } -            transform.par = c(0, 1, 1, 3) -          } -        } -        if (identical(types, c("DFOP", "SFO"))) { -          if (transformations == "mkin") { -            model_function <- function(psi, id, xidep) { -              t <- xidep[, "time"] -              n10 <- psi[id, 1] -              k2 <- exp(psi[id, 2]) -              f12 <- plogis(psi[id, 3]) -              l1 <- exp(psi[id, 4]) -              l2 <- exp(psi[id, 5]) -              g <- plogis(psi[id, 6]) -              ifelse(xidep[, "name"] == parent_name, -                n10 * (g * exp(- l1 * t) + (1 - g) * exp(- l2 * t)), -                ((f12 * g - f12) * l2 * n10 * exp(- l2 * t)) / (l2 - k2) - -                  (f12 * g * l1 * n10 * exp(- l1 * t)) / (l1 - k2) + -                  ((((l1 - k2) * l2 - k2 * l1 + k2^2) * n20 + -                      ((f12 * l1 + (f12 * g - f12) * k2) * l2 - -                        f12 * g * k2 * l1) * n10) * exp( - k2 * t)) / -                  ((l1 - k2) * l2 - k2 * l1 + k2^2) -              ) -            } -          } else { -            model_function <- function(psi, id, xidep) { -              t <- xidep[, "time"] -              n10 <- psi[id, 1] -              k2 <- psi[id, 2] -              f12 <- psi[id, 3] -              l1 <- psi[id, 4] -              l2 <- psi[id, 5] -              g <- psi[id, 6] -              ifelse(xidep[, "name"] == parent_name, -                n10 * (g * exp(- l1 * t) + (1 - g) * exp(- l2 * t)), -                ((f12 * g - f12) * l2 * n10 * exp(- l2 * t)) / (l2 - k2) - -                  (f12 * g * l1 * n10 * exp(- l1 * t)) / (l1 - k2) + -                  ((((l1 - k2) * l2 - k2 * l1 + k2^2) * n20 + -                      ((f12 * l1 + (f12 * g - f12) * k2) * l2 - -                        f12 * g * k2 * l1) * n10) * exp( - k2 * t)) / -                  ((l1 - k2) * l2 - k2 * l1 + k2^2) -              ) -            } -            transform.par = c(0, 1, 3, 1, 1, 3) -          } -        } -      } -    } -  } - -  if (is.function(model_function) & solution_type == "auto") { -    solution_type = "analytical saemix" -  } else { - -    if (solution_type == "auto") -      solution_type <- object[[1]]$solution_type - -    model_function <- function(psi, id, xidep) { - -      uid <- unique(id) - -      res_list <- lapply(uid, function(i) { - -        transparms_optim <- as.numeric(psi[i, ]) # psi[i, ] is a dataframe when called in saemix.predict -        names(transparms_optim) <- names(degparms_optim) - -        odeini_optim <- transparms_optim[odeini_optim_parm_names] -        names(odeini_optim) <- gsub('_0$', '', odeini_optim_parm_names) - -        odeini <- c(odeini_optim, odeini_fixed)[names(mkin_model$diffs)] - -        ode_transparms_optim_names <- setdiff(names(transparms_optim), odeini_optim_parm_names) -        odeparms_optim <- backtransform_odeparms(transparms_optim[ode_transparms_optim_names], mkin_model, -          transform_rates = object[[1]]$transform_rates, -          transform_fractions = object[[1]]$transform_fractions) -        odeparms <- c(odeparms_optim, odeparms_fixed) - -        xidep_i <- subset(xidep, id == i) - -        if (solution_type == "analytical") { -          out_values <- mkin_model$deg_func(xidep_i, odeini, odeparms) -        } else { - -          i_time <- xidep_i$time -          i_name <- xidep_i$name - -          out_wide <- mkinpredict(mkin_model, -            odeparms = odeparms, odeini = odeini, -            solution_type = solution_type, -            outtimes = sort(unique(i_time)), -            na_stop = FALSE -          ) - -          out_index <- cbind(as.character(i_time), as.character(i_name)) -          out_values <- out_wide[out_index] -        } -        return(out_values) -      }) -      res <- unlist(res_list) -      return(res) -    } -  } - -  error.model <- switch(object[[1]]$err_mod, -    const = "constant", -    tc = "combined", -    obs = "constant") - -  if (object[[1]]$err_mod == "obs") { -    warning("The error model 'obs' (variance by variable) can currently not be transferred to an saemix model") -  } - -  error.init <- switch(object[[1]]$err_mod, -    const = c(a = mean(sapply(object, function(x) x$errparms)), b = 1), -    tc = c(a = mean(sapply(object, function(x) x$errparms[1])), -      b = mean(sapply(object, function(x) x$errparms[2]))), -    obs = c(a = mean(sapply(object, function(x) x$errparms)), b = 1)) - -  degparms_psi0 <- degparms_optim -  degparms_psi0[names(degparms_start)] <- degparms_start -  psi0_matrix <- matrix(degparms_psi0, nrow = 1) -  colnames(psi0_matrix) <- names(degparms_psi0) - -  res <- saemix::saemixModel(model_function, -    psi0 = psi0_matrix, -    "Mixed model generated from mmkin object", -    transform.par = transform.par, -    error.model = error.model, -    verbose = verbose -  ) -  attr(res, "mean_dp_start") <- degparms_optim -  return(res) -} - -#' @rdname saem -#' @return An [saemix::SaemixData] object. -#' @export -saemix_data <- function(object, verbose = FALSE, ...) { -  if (nrow(object) > 1) stop("Only row objects allowed") -  ds_names <- colnames(object) - -  ds_list <- lapply(object, function(x) x$data[c("time", "variable", "observed")]) -  names(ds_list) <- ds_names -  ds_saemix_all <- purrr::map_dfr(ds_list, function(x) x, .id = "ds") -  ds_saemix <- data.frame(ds = ds_saemix_all$ds, -    name = as.character(ds_saemix_all$variable), -    time = ds_saemix_all$time, -    value = ds_saemix_all$observed, -    stringsAsFactors = FALSE) - -  res <- saemix::saemixData(ds_saemix, -    name.group = "ds", -    name.predictors = c("time", "name"), -    name.response = "value", -    verbose = verbose, -    ...) -  return(res) -} diff --git a/R/summary.saem.mmkin.R b/R/summary.saem.mmkin.R deleted file mode 100644 index e92c561c..00000000 --- a/R/summary.saem.mmkin.R +++ /dev/null @@ -1,268 +0,0 @@ -#' Summary method for class "saem.mmkin" -#' -#' Lists model equations, initial parameter values, optimised parameters -#' for fixed effects (population), random effects (deviations from the -#' population mean) and residual error model, as well as the resulting -#' endpoints such as formation fractions and DT50 values. Optionally -#' (default is FALSE), the data are listed in full. -#' -#' @param object an object of class [saem.mmkin] -#' @param x an object of class [summary.saem.mmkin] -#' @param data logical, indicating whether the full data should be included in -#'   the summary. -#' @param verbose Should the summary be verbose? -#' @param distimes logical, indicating whether DT50 and DT90 values should be -#'   included. -#' @param digits Number of digits to use for printing -#' @param \dots optional arguments passed to methods like \code{print}. -#' @return The summary function returns a list based on the [saemix::SaemixObject] -#'   obtained in the fit, with at least the following additional components -#'   \item{saemixversion, mkinversion, Rversion}{The saemix, mkin and R versions used} -#'   \item{date.fit, date.summary}{The dates where the fit and the summary were -#'     produced} -#'   \item{diffs}{The differential equations used in the degradation model} -#'   \item{use_of_ff}{Was maximum or minimum use made of formation fractions} -#'   \item{data}{The data} -#'   \item{confint_trans}{Transformed parameters as used in the optimisation, with confidence intervals} -#'   \item{confint_back}{Backtransformed parameters, with confidence intervals if available} -#'   \item{confint_errmod}{Error model parameters with confidence intervals} -#'   \item{ff}{The estimated formation fractions derived from the fitted -#'      model.} -#'   \item{distimes}{The DT50 and DT90 values for each observed variable.} -#'   \item{SFORB}{If applicable, eigenvalues of SFORB components of the model.} -#'   The print method is called for its side effect, i.e. printing the summary. -#' @importFrom stats predict vcov -#' @author Johannes Ranke for the mkin specific parts -#'   saemix authors for the parts inherited from saemix. -#' @examples -#' # Generate five datasets following DFOP-SFO kinetics -#' sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) -#' dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "m1"), -#'  m1 = mkinsub("SFO"), quiet = TRUE) -#' set.seed(1234) -#' k1_in <- rlnorm(5, log(0.1), 0.3) -#' k2_in <- rlnorm(5, log(0.02), 0.3) -#' g_in <- plogis(rnorm(5, qlogis(0.5), 0.3)) -#' f_parent_to_m1_in <- plogis(rnorm(5, qlogis(0.3), 0.3)) -#' k_m1_in <- rlnorm(5, log(0.02), 0.3) -#' -#' pred_dfop_sfo <- function(k1, k2, g, f_parent_to_m1, k_m1) { -#'   mkinpredict(dfop_sfo, -#'     c(k1 = k1, k2 = k2, g = g, f_parent_to_m1 = f_parent_to_m1, k_m1 = k_m1), -#'     c(parent = 100, m1 = 0), -#'     sampling_times) -#' } -#' -#' ds_mean_dfop_sfo <- lapply(1:5, function(i) { -#'   mkinpredict(dfop_sfo, -#'     c(k1 = k1_in[i], k2 = k2_in[i], g = g_in[i], -#'       f_parent_to_m1 = f_parent_to_m1_in[i], k_m1 = k_m1_in[i]), -#'     c(parent = 100, m1 = 0), -#'     sampling_times) -#' }) -#' names(ds_mean_dfop_sfo) <- paste("ds", 1:5) -#' -#' ds_syn_dfop_sfo <- lapply(ds_mean_dfop_sfo, function(ds) { -#'   add_err(ds, -#'     sdfunc = function(value) sqrt(1^2 + value^2 * 0.07^2), -#'     n = 1)[[1]] -#' }) -#' -#' \dontrun{ -#' # Evaluate using mmkin and saem -#' f_mmkin_dfop_sfo <- mmkin(list(dfop_sfo), ds_syn_dfop_sfo, -#'   quiet = TRUE, error_model = "tc", cores = 5) -#' f_saem_dfop_sfo <- saem(f_mmkin_dfop_sfo) -#' summary(f_saem_dfop_sfo, data = TRUE) -#' } -#' -#' @export -summary.saem.mmkin <- function(object, data = FALSE, verbose = FALSE, distimes = TRUE, ...) { - -  mod_vars <- names(object$mkinmod$diffs) - -  pnames <- names(object$mean_dp_start) -  np <- length(pnames) - -  conf.int <- object$so@results@conf.int -  rownames(conf.int) <- conf.int$name -  confint_trans <- as.matrix(conf.int[pnames, c("estimate", "lower", "upper")]) -  colnames(confint_trans)[1] <- "est." - -  # In case objects were produced by earlier versions of saem -  if (is.null(object$transformations)) object$transformations <- "mkin" - -  if (object$transformations == "mkin") { -    bp <- backtransform_odeparms(confint_trans[, "est."], object$mkinmod, -      object$transform_rates, object$transform_fractions) -    bpnames <- names(bp) - -    # Transform boundaries of CI for one parameter at a time, -    # with the exception of sets of formation fractions (single fractions are OK). -    f_names_skip <- character(0) -    for (box in mod_vars) { # Figure out sets of fractions to skip -      f_names <- grep(paste("^f", box, sep = "_"), pnames, value = TRUE) -      n_paths <- length(f_names) -      if (n_paths > 1) f_names_skip <- c(f_names_skip, f_names) -    } - -    confint_back <- matrix(NA, nrow = length(bp), ncol = 3, -      dimnames = list(bpnames, colnames(confint_trans))) -    confint_back[, "est."] <- bp - -    for (pname in pnames) { -      if (!pname %in% f_names_skip) { -        par.lower <- confint_trans[pname, "lower"] -        par.upper <- confint_trans[pname, "upper"] -        names(par.lower) <- names(par.upper) <- pname -        bpl <- backtransform_odeparms(par.lower, object$mkinmod, -                                              object$transform_rates, -                                              object$transform_fractions) -        bpu <- backtransform_odeparms(par.upper, object$mkinmod, -                                              object$transform_rates, -                                              object$transform_fractions) -        confint_back[names(bpl), "lower"] <- bpl -        confint_back[names(bpu), "upper"] <- bpu -      } -    } -  } else { -    confint_back <- confint_trans -  } - -  #  Correlation of fixed effects (inspired by summary.nlme) -  varFix <- vcov(object$so)[1:np, 1:np] -  stdFix <- sqrt(diag(varFix)) -  object$corFixed <- array( -    t(varFix/stdFix)/stdFix, -    dim(varFix), -    list(pnames, pnames)) - -  # Random effects -  rnames <- paste0("SD.", pnames) -  confint_ranef <- as.matrix(conf.int[rnames, c("estimate", "lower", "upper")]) -  colnames(confint_ranef)[1] <- "est." - -  # Error model -  enames <- if (object$err_mod == "const") "a.1" else c("a.1", "b.1") -  confint_errmod <- as.matrix(conf.int[enames, c("estimate", "lower", "upper")]) -  colnames(confint_errmod)[1] <- "est." - - -  object$confint_trans <- confint_trans -  object$confint_ranef <- confint_ranef -  object$confint_errmod <- confint_errmod -  object$confint_back <- confint_back - -  object$date.summary = date() -  object$use_of_ff = object$mkinmod$use_of_ff -  object$error_model_algorithm = object$mmkin_orig[[1]]$error_model_algorithm -  err_mod = object$mmkin_orig[[1]]$err_mod - -  object$diffs <- object$mkinmod$diffs -  object$print_data <- data # boolean: Should we print the data? -  so_pred <- object$so@results@predictions - -  names(object$data)[4] <- "observed" # rename value to observed - -  object$verbose <- verbose - -  object$fixed <- object$mmkin_orig[[1]]$fixed -  object$AIC = AIC(object$so) -  object$BIC = BIC(object$so) -  object$logLik = logLik(object$so, method = "is") - -  ep <- endpoints(object) -  if (length(ep$ff) != 0) -    object$ff <- ep$ff -  if (distimes) object$distimes <- ep$distimes -  if (length(ep$SFORB) != 0) object$SFORB <- ep$SFORB -  class(object) <- c("summary.saem.mmkin") -  return(object) -} - -#' @rdname summary.saem.mmkin -#' @export -print.summary.saem.mmkin <- function(x, digits = max(3, getOption("digits") - 3), verbose = x$verbose, ...) { -  cat("saemix version used for fitting:     ", x$saemixversion, "\n") -  cat("mkin version used for pre-fitting: ", x$mkinversion, "\n") -  cat("R version used for fitting:        ", x$Rversion, "\n") - -  cat("Date of fit:    ", x$date.fit, "\n") -  cat("Date of summary:", x$date.summary, "\n") - -  cat("\nEquations:\n") -  nice_diffs <- gsub("^(d.*) =", "\\1/dt =", x[["diffs"]]) -  writeLines(strwrap(nice_diffs, exdent = 11)) - -  cat("\nData:\n") -  cat(nrow(x$data), "observations of", -    length(unique(x$data$name)), "variable(s) grouped in", -    length(unique(x$data$ds)), "datasets\n") - -  cat("\nModel predictions using solution type", x$solution_type, "\n") - -  cat("\nFitted in", x$time[["elapsed"]],  "s using", paste(x$so@options$nbiter.saemix, collapse = ", "), "iterations\n") - -  cat("\nVariance model: ") -  cat(switch(x$err_mod, -    const = "Constant variance", -    obs = "Variance unique to each observed variable", -    tc = "Two-component variance function"), "\n") - -  cat("\nMean of starting values for individual parameters:\n") -  print(x$mean_dp_start, digits = digits) - -  cat("\nFixed degradation parameter values:\n") -  if(length(x$fixed$value) == 0) cat("None\n") -  else print(x$fixed, digits = digits) - -  cat("\nResults:\n\n") -  cat("Likelihood computed by importance sampling\n") -  print(data.frame(AIC = x$AIC, BIC = x$BIC, logLik = x$logLik, -      row.names = " "), digits = digits) - -  cat("\nOptimised parameters:\n") -  print(x$confint_trans, digits = digits) - -  if (nrow(x$confint_trans) > 1) { -    corr <- x$corFixed -    class(corr) <- "correlation" -    print(corr, title = "\nCorrelation:", ...) -  } - -  cat("\nRandom effects:\n") -  print(x$confint_ranef, digits = digits) - -  cat("\nVariance model:\n") -  print(x$confint_errmod, digits = digits) - -  if (x$transformations == "mkin") { -    cat("\nBacktransformed parameters:\n") -    print(x$confint_back, digits = digits) -  } - -  printSFORB <- !is.null(x$SFORB) -  if(printSFORB){ -    cat("\nEstimated Eigenvalues of SFORB model(s):\n") -    print(x$SFORB, digits = digits,...) -  } - -  printff <- !is.null(x$ff) -  if(printff){ -    cat("\nResulting formation fractions:\n") -    print(data.frame(ff = x$ff), digits = digits,...) -  } - -  printdistimes <- !is.null(x$distimes) -  if(printdistimes){ -    cat("\nEstimated disappearance times:\n") -    print(x$distimes, digits = digits,...) -  } - -  if (x$print_data){ -    cat("\nData:\n") -    print(format(x$data, digits = digits, ...), row.names = FALSE) -  } - -  invisible(x) -}  | 
