diff options
| author | Johannes Ranke <jranke@uni-bremen.de> | 2020-11-30 16:05:10 +0100 | 
|---|---|---|
| committer | Johannes Ranke <jranke@uni-bremen.de> | 2020-11-30 16:05:10 +0100 | 
| commit | 524a8bba89b95840b4e9215c403947a8bb76d7b2 (patch) | |
| tree | f28717d46b0ac95bd56d4b84ee4fb770364b91ba /docs/dev/reference/nlme.mmkin.html | |
| parent | 78884beed74c18c99521b9ceeaa643e13cf94c06 (diff) | |
Complete rebuild of static docs of dev version
Diffstat (limited to 'docs/dev/reference/nlme.mmkin.html')
| -rw-r--r-- | docs/dev/reference/nlme.mmkin.html | 184 | 
1 files changed, 83 insertions, 101 deletions
| diff --git a/docs/dev/reference/nlme.mmkin.html b/docs/dev/reference/nlme.mmkin.html index 84990521..6d9f2007 100644 --- a/docs/dev/reference/nlme.mmkin.html +++ b/docs/dev/reference/nlme.mmkin.html @@ -193,8 +193,10 @@ mmkin model are used as fixed parameters</p></td>      </tr>      <tr>        <th>random</th> -      <td><p>If not specified, all fixed effects are complemented -with uncorrelated random effects</p></td> +      <td><p>If not specified, correlated random effects are set up +for all optimised degradation model parameters using the log-Cholesky +parameterization <a href='https://rdrr.io/pkg/nlme/man/pdLogChol.html'>nlme::pdLogChol</a> that is also the default of +the generic <a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a> method.</p></td>      </tr>      <tr>        <th>groups</th> @@ -274,11 +276,14 @@ methods that will automatically work on 'nlme.mmkin' objects, such as  <span class='va'>f</span> <span class='op'><-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"DFOP"</span><span class='op'>)</span>, <span class='va'>ds</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, cores <span class='op'>=</span> <span class='fl'>1</span><span class='op'>)</span>  <span class='kw'><a href='https://rdrr.io/r/base/library.html'>library</a></span><span class='op'>(</span><span class='va'><a href='https://svn.r-project.org/R-packages/trunk/nlme/'>nlme</a></span><span class='op'>)</span>  <span class='va'>f_nlme_sfo</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f</span><span class='op'>[</span><span class='st'>"SFO"</span>, <span class='op'>]</span><span class='op'>)</span> -<span class='va'>f_nlme_dfop</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f</span><span class='op'>[</span><span class='st'>"DFOP"</span>, <span class='op'>]</span><span class='op'>)</span> -<span class='fu'><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></span><span class='op'>(</span><span class='va'>f_nlme_sfo</span>, <span class='va'>f_nlme_dfop</span><span class='op'>)</span> -</div><div class='output co'>#>             df      AIC -#> f_nlme_sfo   5 625.0539 -#> f_nlme_dfop  9 495.1270</div><div class='input'><span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='warning'>Warning: Iteration 1, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!</span></div><div class='input'> +<span class='co'># \dontrun{</span> + +  <span class='va'>f_nlme_dfop</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f</span><span class='op'>[</span><span class='st'>"DFOP"</span>, <span class='op'>]</span><span class='op'>)</span> +  <span class='fu'><a href='https://rdrr.io/r/stats/anova.html'>anova</a></span><span class='op'>(</span><span class='va'>f_nlme_sfo</span>, <span class='va'>f_nlme_dfop</span><span class='op'>)</span> +</div><div class='output co'>#>             Model df      AIC      BIC    logLik   Test  L.Ratio p-value +#> f_nlme_sfo      1  6 622.0677 637.0666 -305.0338                         +#> f_nlme_dfop     2 15 487.0134 524.5105 -228.5067 1 vs 2 153.0543  <.0001</div><div class='input'>  <span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop</span><span class='op'>)</span>  </div><div class='output co'>#> Kinetic nonlinear mixed-effects model fit by maximum likelihood  #>   #> Structural model: @@ -289,48 +294,30 @@ methods that will automatically work on 'nlme.mmkin' objects, such as  #> Data:  #> 90 observations of 1 variable(s) grouped in 5 datasets  #>  -#> Log-likelihood: -238.5635 +#> Log-likelihood: -228.5067  #>   #> Fixed effects:  #>  list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)   #> parent_0   log_k1   log_k2 g_qlogis  -#>  94.1702  -1.8002  -4.1474   0.0324  +#> 94.18273 -1.82135 -4.16872  0.08949   #>   #> Random effects:  #>  Formula: list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)  #>  Level: ds -#>  Structure: Diagonal -#>         parent_0 log_k1 log_k2 g_qlogis Residual -#> StdDev:    2.488 0.8447   1.33   0.4652    2.321 -#> </div><div class='input'><span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop</span><span class='op'>)</span> -</div><div class='img'><img src='nlme.mmkin-1.png' alt='' width='700' height='433' /></div><div class='input'><span class='fu'><a href='endpoints.html'>endpoints</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop</span><span class='op'>)</span> +#>  Structure: General positive-definite, Log-Cholesky parametrization +#>          StdDev    Corr                 +#> parent_0 2.4656397 prnt_0 log_k1 log_k2 +#> log_k1   0.7950788  0.240               +#> log_k2   1.2605419  0.150  0.984        +#> g_qlogis 0.5013272 -0.075  0.843  0.834 +#> Residual 2.3308100                      +#> </div><div class='input'>  <span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop</span><span class='op'>)</span> +</div><div class='img'><img src='nlme.mmkin-1.png' alt='' width='700' height='433' /></div><div class='input'>  <span class='fu'><a href='endpoints.html'>endpoints</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop</span><span class='op'>)</span>  </div><div class='output co'>#> $distimes  #>            DT50     DT90 DT50back  DT50_k1  DT50_k2 -#> parent 10.79857 100.7937 30.34192 4.193937 43.85442 +#> parent 10.57119 101.0652 30.42366 4.283776 44.80015  #> </div><div class='input'> -<span class='co'># \dontrun{</span> -  <span class='va'>f_nlme_2</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f</span><span class='op'>[</span><span class='st'>"SFO"</span>, <span class='op'>]</span>, start <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span>parent_0 <span class='op'>=</span> <span class='fl'>100</span>, log_k_parent <span class='op'>=</span> <span class='fl'>0.1</span><span class='op'>)</span><span class='op'>)</span> -  <span class='fu'><a href='https://rdrr.io/r/stats/update.html'>update</a></span><span class='op'>(</span><span class='va'>f_nlme_2</span>, random <span class='op'>=</span> <span class='va'>parent_0</span> <span class='op'>~</span> <span class='fl'>1</span><span class='op'>)</span> -</div><div class='output co'>#> Kinetic nonlinear mixed-effects model fit by maximum likelihood -#>  -#> Structural model: -#> d_parent/dt = - k_parent * parent -#>  -#> Data: -#>  observations of 0 variable(s) grouped in 0 datasets -#>  -#> Log-likelihood: -404.3729 -#>  -#> Fixed effects: -#>  list(parent_0 ~ 1, log_k_parent ~ 1)  -#>     parent_0 log_k_parent  -#>       75.933       -3.556  -#>  -#> Random effects: -#>  Formula: parent_0 ~ 1 | ds -#>         parent_0 Residual -#> StdDev: 0.002417    21.63 -#> </div><div class='input'>  <span class='va'>ds_2</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='va'>experimental_data_for_UBA_2019</span><span class='op'>[</span><span class='fl'>6</span><span class='op'>:</span><span class='fl'>10</span><span class='op'>]</span>, +  <span class='va'>ds_2</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/r/base/lapply.html'>lapply</a></span><span class='op'>(</span><span class='va'>experimental_data_for_UBA_2019</span><span class='op'>[</span><span class='fl'>6</span><span class='op'>:</span><span class='fl'>10</span><span class='op'>]</span>,     <span class='kw'>function</span><span class='op'>(</span><span class='va'>x</span><span class='op'>)</span> <span class='va'>x</span><span class='op'>$</span><span class='va'>data</span><span class='op'>[</span><span class='fu'><a href='https://rdrr.io/r/base/c.html'>c</a></span><span class='op'>(</span><span class='st'>"name"</span>, <span class='st'>"time"</span>, <span class='st'>"value"</span><span class='op'>)</span><span class='op'>]</span><span class='op'>)</span>    <span class='va'>m_sfo_sfo</span> <span class='op'><-</span> <span class='fu'><a href='mkinmod.html'>mkinmod</a></span><span class='op'>(</span>parent <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span>, <span class='st'>"A1"</span><span class='op'>)</span>,      A1 <span class='op'>=</span> <span class='fu'><a href='mkinmod.html'>mkinsub</a></span><span class='op'>(</span><span class='st'>"SFO"</span><span class='op'>)</span>, use_of_ff <span class='op'>=</span> <span class='st'>"min"</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> @@ -345,66 +332,42 @@ methods that will automatically work on 'nlme.mmkin' objects, such as      <span class='va'>ds_2</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span>    <span class='va'>f_nlme_sfo_sfo</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_2</span><span class='op'>[</span><span class='st'>"SFO-SFO"</span>, <span class='op'>]</span><span class='op'>)</span> -  <span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_nlme_sfo_sfo</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='warning'>Warning: Iteration 1, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 2, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!</span></div><div class='input'>  <span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_nlme_sfo_sfo</span><span class='op'>)</span>  </div><div class='img'><img src='nlme.mmkin-2.png' alt='' width='700' height='433' /></div><div class='input'> -  <span class='co'># With formation fractions</span> -  <span class='va'>f_nlme_sfo_sfo_ff</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_2</span><span class='op'>[</span><span class='st'>"SFO-SFO-ff"</span>, <span class='op'>]</span><span class='op'>)</span> -  <span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_nlme_sfo_sfo_ff</span><span class='op'>)</span> -</div><div class='img'><img src='nlme.mmkin-3.png' alt='' width='700' height='433' /></div><div class='input'> -  <span class='co'># For the following fit we need to increase pnlsMaxIter and the tolerance</span> -  <span class='co'># to get convergence</span> -  <span class='va'>f_nlme_dfop_sfo</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_2</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span>, -    control <span class='op'>=</span> <span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span>pnlsMaxIter <span class='op'>=</span> <span class='fl'>120</span>, tolerance <span class='op'>=</span> <span class='fl'>5e-4</span><span class='op'>)</span>, verbose <span class='op'>=</span> <span class='cn'>TRUE</span><span class='op'>)</span> -</div><div class='output co'>#>  -#> **Iteration 1 -#> LME step: Loglik: -404.9583, nlminb iterations: 1 -#> reStruct  parameters: -#>        ds1        ds2        ds3        ds4        ds5        ds6  -#> -0.4114356  0.9798646  1.3524300  0.7293315  0.3354323  1.3647313  -#>  Beginning PNLS step: ..  completed fit_nlme() step. -#> PNLS step: RSS =  630.3633  -#>  fixed effects: 93.82269  -5.455993  -0.9601037  -1.862196  -4.199671  0.07824609   -#>  iterations: 120  -#> Convergence crit. (must all become <= tolerance = 0.0005): -#>     fixed  reStruct  -#> 0.7897284 0.5822782  -#>  -#> **Iteration 2 -#> LME step: Loglik: -407.7755, nlminb iterations: 11 -#> reStruct  parameters: -#>         ds1         ds2         ds3         ds4         ds5         ds6  -#> -0.37122411  0.00305562  1.44336560  0.72467122  0.30160310  1.40762692  -#>  Beginning PNLS step: ..  completed fit_nlme() step. -#> PNLS step: RSS =  630.3637  -#>  fixed effects: 93.82269  -5.455992  -0.9601036  -1.862196  -4.199671  0.0782462   -#>  iterations: 120  -#> Convergence crit. (must all become <= tolerance = 0.0005): -#>        fixed     reStruct  -#> 1.375673e-06 9.758294e-06 </div><div class='input'> +  <span class='co'># With formation fractions this does not coverge with defaults</span> +  <span class='co'># f_nlme_sfo_sfo_ff <- nlme(f_2["SFO-SFO-ff", ])</span> +  <span class='co'>#plot(f_nlme_sfo_sfo_ff)</span> + +  <span class='co'># With the log-Cholesky parameterization, this converges in 11</span> +  <span class='co'># iterations and around 100 seconds, but without tweaking control</span> +  <span class='co'># parameters (with pdDiag, increasing the tolerance and pnlsMaxIter was</span> +  <span class='co'># necessary)</span> +  <span class='va'>f_nlme_dfop_sfo</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_2</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='warning'>Warning: Iteration 1, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 2, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 3, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 4, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!</span></div><div class='input'>    <span class='fu'><a href='https://rdrr.io/r/graphics/plot.default.html'>plot</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop_sfo</span><span class='op'>)</span> -</div><div class='img'><img src='nlme.mmkin-4.png' alt='' width='700' height='433' /></div><div class='input'> +</div><div class='img'><img src='nlme.mmkin-3.png' alt='' width='700' height='433' /></div><div class='input'>    <span class='fu'><a href='https://rdrr.io/r/stats/anova.html'>anova</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop_sfo</span>, <span class='va'>f_nlme_sfo_sfo</span><span class='op'>)</span>  </div><div class='output co'>#>                 Model df       AIC       BIC    logLik   Test  L.Ratio p-value -#> f_nlme_dfop_sfo     1 13  843.8547  884.6201 -408.9274                         -#> f_nlme_sfo_sfo      2  9 1085.1821 1113.4043 -533.5910 1 vs 2 249.3274  <.0001</div><div class='input'> +#> f_nlme_dfop_sfo     1 28  811.7199  899.5222 -377.8599                         +#> f_nlme_sfo_sfo      2 15 1075.1934 1122.2304 -522.5967 1 vs 2 289.4736  <.0001</div><div class='input'>    <span class='fu'><a href='endpoints.html'>endpoints</a></span><span class='op'>(</span><span class='va'>f_nlme_sfo_sfo</span><span class='op'>)</span>  </div><div class='output co'>#> $ff  #> parent_sink   parent_A1     A1_sink  -#>   0.5912432   0.4087568   1.0000000  +#>   0.6512742   0.3487258   1.0000000   #>   #> $distimes -#>            DT50     DT90 -#> parent 19.13518  63.5657 -#> A1     66.02155 219.3189 +#>             DT50      DT90 +#> parent  18.03144  59.89916 +#> A1     102.72949 341.25997  #> </div><div class='input'>  <span class='fu'><a href='endpoints.html'>endpoints</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop_sfo</span><span class='op'>)</span>  </div><div class='output co'>#> $ff  #>   parent_A1 parent_sink  -#>   0.2768574   0.7231426  +#>   0.2762167   0.7237833   #>   #> $distimes  #>             DT50     DT90 DT50back  DT50_k1  DT50_k2 -#> parent  11.07091 104.6320 31.49738 4.462384 46.20825 -#> A1     162.30523 539.1663       NA       NA       NA +#> parent  11.15024 133.9652 40.32755 4.688015 62.16017 +#> A1     235.83191 783.4167       NA       NA       NA  #> </div><div class='input'>    <span class='kw'>if</span> <span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/length.html'>length</a></span><span class='op'>(</span><span class='fu'>findFunction</span><span class='op'>(</span><span class='st'>"varConstProp"</span><span class='op'>)</span><span class='op'>)</span> <span class='op'>></span> <span class='fl'>0</span><span class='op'>)</span> <span class='op'>{</span> <span class='co'># tc error model for nlme available</span>      <span class='co'># Attempts to fit metabolite kinetics with the tc error model are possible,</span> @@ -416,7 +379,7 @@ methods that will automatically work on 'nlme.mmkin' objects, such as      <span class='fu'><a href='https://rdrr.io/r/stats/AIC.html'>AIC</a></span><span class='op'>(</span><span class='va'>f_nlme_sfo</span>, <span class='va'>f_nlme_sfo_tc</span>, <span class='va'>f_nlme_dfop</span>, <span class='va'>f_nlme_dfop_tc</span><span class='op'>)</span>      <span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop_tc</span><span class='op'>)</span>    <span class='op'>}</span> -</div><div class='output co'>#> Kinetic nonlinear mixed-effects model fit by maximum likelihood +</div><div class='output co'>#> <span class='warning'>Warning: Iteration 1, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 14, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 1, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 2, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 4, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 5, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 6, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 7, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 8, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 9, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 10, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 11, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 12, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 14, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 15, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 16, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 17, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 18, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='output co'>#> Kinetic nonlinear mixed-effects model fit by maximum likelihood  #>   #> Structural model:  #> d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 * @@ -426,31 +389,35 @@ methods that will automatically work on 'nlme.mmkin' objects, such as  #> Data:  #> 90 observations of 1 variable(s) grouped in 5 datasets  #>  -#> Log-likelihood: -238.4298 +#> Log-likelihood: -228.3575  #>   #> Fixed effects:  #>  list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)   #> parent_0   log_k1   log_k2 g_qlogis  -#> 94.04775 -1.82340 -4.16715  0.05685  +#>  93.6695  -1.9187  -4.4253   0.2215   #>   #> Random effects:  #>  Formula: list(parent_0 ~ 1, log_k1 ~ 1, log_k2 ~ 1, g_qlogis ~ 1)  #>  Level: ds -#>  Structure: Diagonal -#>         parent_0 log_k1 log_k2 g_qlogis Residual -#> StdDev:    2.474   0.85  1.337   0.4659        1 +#>  Structure: General positive-definite, Log-Cholesky parametrization +#>          StdDev    Corr                 +#> parent_0 2.8574651 prnt_0 log_k1 log_k2 +#> log_k1   0.9689083  0.506               +#> log_k2   1.5798002  0.446  0.997        +#> g_qlogis 0.5761569 -0.457  0.247  0.263 +#> Residual 1.0000000                       #>   #> Variance function:  #>  Structure: Constant plus proportion of variance covariate  #>  Formula: ~fitted(.)   #>  Parameter estimates: -#>      const       prop  -#> 2.23224114 0.01262341 </div><div class='input'> +#>     const      prop  +#> 2.0376990 0.0221686 </div><div class='input'>    <span class='va'>f_2_obs</span> <span class='op'><-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='st'>"SFO-SFO"</span> <span class='op'>=</span> <span class='va'>m_sfo_sfo</span>,     <span class='st'>"DFOP-SFO"</span> <span class='op'>=</span> <span class='va'>m_dfop_sfo</span><span class='op'>)</span>,      <span class='va'>ds_2</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"obs"</span><span class='op'>)</span>    <span class='va'>f_nlme_sfo_sfo_obs</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_2_obs</span><span class='op'>[</span><span class='st'>"SFO-SFO"</span>, <span class='op'>]</span><span class='op'>)</span> -  <span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>f_nlme_sfo_sfo_obs</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='warning'>Warning: Iteration 1, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!</span></div><div class='input'>  <span class='fu'><a href='https://rdrr.io/r/base/print.html'>print</a></span><span class='op'>(</span><span class='va'>f_nlme_sfo_sfo_obs</span><span class='op'>)</span>  </div><div class='output co'>#> Kinetic nonlinear mixed-effects model fit by maximum likelihood  #>   #> Structural model: @@ -460,29 +427,44 @@ methods that will automatically work on 'nlme.mmkin' objects, such as  #> Data:  #> 170 observations of 2 variable(s) grouped in 5 datasets  #>  -#> Log-likelihood: -472.976 +#> Log-likelihood: -462.2203  #>   #> Fixed effects:  #>  list(parent_0 ~ 1, log_k_parent_sink ~ 1, log_k_parent_A1 ~ 1,      log_k_A1_sink ~ 1)   #>          parent_0 log_k_parent_sink   log_k_parent_A1     log_k_A1_sink  -#>            87.976            -3.670            -4.164            -4.645  +#>            88.682            -3.664            -4.164            -4.665   #>   #> Random effects:  #>  Formula: list(parent_0 ~ 1, log_k_parent_sink ~ 1, log_k_parent_A1 ~ 1,      log_k_A1_sink ~ 1)  #>  Level: ds -#>  Structure: Diagonal -#>         parent_0 log_k_parent_sink log_k_parent_A1 log_k_A1_sink Residual -#> StdDev:    3.992             1.777           1.055        0.4821    6.483 +#>  Structure: General positive-definite, Log-Cholesky parametrization +#>                   StdDev    Corr                 +#> parent_0          4.9153305 prnt_0 lg_k__ l___A1 +#> log_k_parent_sink 1.8158570 0.956                +#> log_k_parent_A1   1.0514548 0.821  0.907         +#> log_k_A1_sink     0.4924122 0.035  0.315  0.533  +#> Residual          6.3987599                       #>   #> Variance function:  #>  Structure: Different standard deviations per stratum  #>  Formula: ~1 | name   #>  Parameter estimates:  #>    parent        A1  -#> 1.0000000 0.2050003 </div><div class='input'>  <span class='co'># The same with DFOP-SFO does not converge, apparently the variances of</span> -  <span class='co'># parent and A1 are too similar in this case, so that the model is</span> -  <span class='co'># overparameterised</span> -  <span class='co'>#f_nlme_dfop_sfo_obs <- nlme(f_2_obs["DFOP-SFO", ], control = list(maxIter = 100))</span> +#> 1.0000000 0.2040647 </div><div class='input'>  <span class='va'>f_nlme_dfop_sfo_obs</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_2_obs</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='warning'>Warning: Iteration 1, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 2, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 3, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 4, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!</span></div><div class='input'> +  <span class='va'>f_2_tc</span> <span class='op'><-</span> <span class='fu'><a href='mmkin.html'>mmkin</a></span><span class='op'>(</span><span class='fu'><a href='https://rdrr.io/r/base/list.html'>list</a></span><span class='op'>(</span><span class='st'>"SFO-SFO"</span> <span class='op'>=</span> <span class='va'>m_sfo_sfo</span>, +   <span class='st'>"DFOP-SFO"</span> <span class='op'>=</span> <span class='va'>m_dfop_sfo</span><span class='op'>)</span>, +    <span class='va'>ds_2</span>, quiet <span class='op'>=</span> <span class='cn'>TRUE</span>, error_model <span class='op'>=</span> <span class='st'>"tc"</span><span class='op'>)</span> +  <span class='co'># f_nlme_sfo_sfo_tc <- nlme(f_2_tc["SFO-SFO", ]) # stops with error message</span> +  <span class='va'>f_nlme_dfop_sfo_tc</span> <span class='op'><-</span> <span class='fu'><a href='https://rdrr.io/pkg/nlme/man/nlme.html'>nlme</a></span><span class='op'>(</span><span class='va'>f_2_tc</span><span class='op'>[</span><span class='st'>"DFOP-SFO"</span>, <span class='op'>]</span><span class='op'>)</span> +</div><div class='output co'>#> <span class='warning'>Warning: Iteration 1, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 2, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 3, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 4, LME step: nlminb() did not converge (code = 1). Do increase 'msMaxIter'!</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 6, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 7, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 8, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 9, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 11, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 12, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 15, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='output co'>#> <span class='warning'>Warning: Iteration 25, LME step: nlminb() did not converge (code = 1). PORT message: false convergence (8)</span></div><div class='input'>  <span class='co'># We get warnings about false convergence in the LME step in several iterations</span> +  <span class='co'># but as the last such warning occurs in iteration 25 and we have 28 iterations</span> +  <span class='co'># we can ignore these</span> +  <span class='fu'><a href='https://rdrr.io/r/stats/anova.html'>anova</a></span><span class='op'>(</span><span class='va'>f_nlme_dfop_sfo</span>, <span class='va'>f_nlme_dfop_sfo_obs</span>, <span class='va'>f_nlme_dfop_sfo_tc</span><span class='op'>)</span> +</div><div class='output co'>#>                     Model df      AIC      BIC    logLik   Test L.Ratio p-value +#> f_nlme_dfop_sfo         1 28 811.7199 899.5222 -377.8599                        +#> f_nlme_dfop_sfo_obs     2 29 784.1304 875.0685 -363.0652 1 vs 2 29.5895  <.0001 +#> f_nlme_dfop_sfo_tc      3 29 791.9981 882.9362 -366.9990                       </div><div class='input'>  <span class='co'># }</span>  </div></pre>    </div> | 
