diff options
| author | Johannes Ranke <jranke@uni-bremen.de> | 2015-06-22 06:09:00 +0200 | 
|---|---|---|
| committer | Johannes Ranke <jranke@uni-bremen.de> | 2015-06-22 20:31:22 +0200 | 
| commit | 01d9de6ff165c64ffc4366f2eeb3d2649b5c74c0 (patch) | |
| tree | 87d586590a1b94e5915cdd51394caef7eaf51ed1 /vignettes/compiled_models.html | |
| parent | 5bd8716b2e4c880b798d1e5e231d49816bbdebd1 (diff) | |
Version bump, correct benchmark in vignette/compiled_models
Reorganisation of the vignette generation in the Makefile.
Improved YAML header in the R markdown vignettes.
Rebuilt vignettes with the package installed.
Diffstat (limited to 'vignettes/compiled_models.html')
| -rw-r--r-- | vignettes/compiled_models.html | 69 | 
1 files changed, 39 insertions, 30 deletions
| diff --git a/vignettes/compiled_models.html b/vignettes/compiled_models.html index 5fcd88fb..fc71debe 100644 --- a/vignettes/compiled_models.html +++ b/vignettes/compiled_models.html @@ -8,7 +8,9 @@  <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />  <meta name="generator" content="pandoc" /> +<meta name="author" content="Johannes Ranke" /> +<meta name="date" content="2015-06-22" />  <title>Performance benefit by using compiled model definitions in mkin</title> @@ -62,6 +64,8 @@ img {  <div id="header">  <h1 class="title">Performance benefit by using compiled model definitions in mkin</h1> +<h4 class="author"><em>Johannes Ranke</em></h4> +<h4 class="date"><em>2015-06-22</em></h4>  </div>  <div id="TOC"> @@ -71,17 +75,17 @@ img {  </ul>  </div> -<!-- -%\VignetteEngine{knitr::rmarkdown} -%\VignetteIndexEntry{Performance benefit by using compiled model definitions in mkin} ---> -<div id="benchmark-for-a-model-that-can-also-be-solved-with-eigenvalues" class="section level1"> -<h1>Benchmark for a model that can also be solved with Eigenvalues</h1> -<p>This evaluation is taken from the example section of mkinfit. When using an mkin version equal to or greater than 0.9-36 and a compiler (gcc) is installed, you will see a message that the model is being compiled from autogenerated C code when defining a model using mkinmod.</p> +<div id="benchmark-for-a-model-that-can-also-be-solved-with-eigenvalues" class="section level2"> +<h2>Benchmark for a model that can also be solved with Eigenvalues</h2> +<p>This evaluation is taken from the example section of mkinfit. When using an mkin version equal to or greater than 0.9-36 and a compiler (gcc) is installed, you will see a message that the model is being compiled from autogenerated C code when defining a model using mkinmod. The package tests for presence of the gcc compiler using</p> +<pre class="r"><code>Sys.which("gcc")</code></pre> +<pre><code>##            gcc  +## "/usr/bin/gcc"</code></pre> +<p>First, we build a simple degradation model for a parent compound with one metabolite.</p>  <pre class="r"><code>library("mkin")  SFO_SFO <- mkinmod( -  parent = list(type = "SFO", to = "m1", sink = TRUE), -  m1 = list(type = "SFO"))</code></pre> +  parent = mkinsub("SFO", "m1"), +  m1 = mkinsub("SFO"))</code></pre>  <pre><code>## Compiling differential equation model from auto-generated C code...</code></pre>  <p>We can compare the performance of the Eigenvalue based solution against the compiled version and the R implementation of the differential equations using the microbenchmark package.</p>  <pre class="r"><code>library("microbenchmark") @@ -95,26 +99,26 @@ smb.1 <- summary(mb.1)[-1]  rownames(smb.1) <- c("deSolve, not compiled", "Eigenvalue based", "deSolve, compiled")  print(smb.1)</code></pre>  <pre><code>##                             min        lq      mean    median        uq -## deSolve, not compiled 6980.8002 6996.4739 7024.5611 7012.1476 7046.4415 -## Eigenvalue based       925.3350  928.9405  951.8405  932.5460  965.0932 -## deSolve, compiled      747.2635  761.9405  771.4339  776.6174  783.5191 +## deSolve, not compiled 5379.4269 5431.6605 5455.0396 5483.8940 5492.8460 +## Eigenvalue based       930.6245  951.6701  959.4653  972.7157  973.8857 +## deSolve, compiled      755.9828  771.1000  794.1810  786.2172  813.2800  ##                             max neval -## deSolve, not compiled 7080.7354     3 -## Eigenvalue based       997.6404     3 -## deSolve, compiled      790.4207     3</code></pre> -<p>We see that using the compiled model is by a factor of 9 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p> +## deSolve, not compiled 5501.7979     3 +## Eigenvalue based       975.0556     3 +## deSolve, compiled      840.3428     3</code></pre> +<p>We see that using the compiled model is by a factor of 7 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p>  <pre class="r"><code>smb.1["median"]/smb.1["deSolve, compiled", "median"]</code></pre>  <pre><code>##                         median -## deSolve, not compiled 9.029089 -## Eigenvalue based      1.200779 +## deSolve, not compiled 6.975037 +## Eigenvalue based      1.237210  ## deSolve, compiled     1.000000</code></pre>  </div> -<div id="benchmark-for-a-model-that-can-not-be-solved-with-eigenvalues" class="section level1"> -<h1>Benchmark for a model that can not be solved with Eigenvalues</h1> +<div id="benchmark-for-a-model-that-can-not-be-solved-with-eigenvalues" class="section level2"> +<h2>Benchmark for a model that can not be solved with Eigenvalues</h2>  <p>This evaluation is also taken from the example section of mkinfit.</p>  <pre class="r"><code>FOMC_SFO <- mkinmod( -  parent = list(type = "FOMC", to = "m1", sink = TRUE), -  m1 = list(type = "SFO"))</code></pre> +  parent = mkinsub("FOMC", "m1"), +  m1 = mkinsub( "SFO"))</code></pre>  <pre><code>## Compiling differential equation model from auto-generated C code...</code></pre>  <pre class="r"><code>mb.2 <- microbenchmark(    mkinfit(FOMC_SFO, FOCUS_2006_D, use_compiled = FALSE, quiet = TRUE), @@ -123,17 +127,22 @@ print(smb.1)</code></pre>  smb.2 <- summary(mb.2)[-1]  rownames(smb.2) <- c("deSolve, not compiled", "deSolve, compiled")  print(smb.2)</code></pre> -<pre><code>##                             min        lq      mean    median        uq -## deSolve, not compiled 14.127630 14.245064 14.298201 14.362497 14.383486 -## deSolve, compiled      1.354744  1.362167  1.366362  1.369589  1.372171 +<pre><code>##                             min       lq     mean    median        uq +## deSolve, not compiled 11.815894 11.84960 12.03290 11.883305 12.141404 +## deSolve, compiled      1.387086  1.43514  1.45956  1.483194  1.495796  ##                             max neval -## deSolve, not compiled 14.404474     3 -## deSolve, compiled      1.374752     3</code></pre> +## deSolve, not compiled 12.399502     3 +## deSolve, compiled      1.508399     3</code></pre>  <pre class="r"><code>smb.2["median"]/smb.2["deSolve, compiled", "median"]</code></pre>  <pre><code>##                         median -## deSolve, not compiled 10.48672 -## deSolve, compiled      1.00000</code></pre> -<p>Here we get a performance benefit of a factor of 10.5 using the version of the differential equation model compiled from C code using the inline package!</p> +## deSolve, not compiled 8.011968 +## deSolve, compiled     1.000000</code></pre> +<p>Here we get a performance benefit of a factor of 8 using the version of the differential equation model compiled from C code using the inline package!</p> +<p>This vignette was built with mkin 0.9.37 on</p> +<pre><code>## R version 3.2.1 (2015-06-18) +## Platform: x86_64-pc-linux-gnu (64-bit) +## Running under: Debian GNU/Linux 8 (jessie)</code></pre> +<pre><code>## CPU model: Intel(R) Core(TM) i7-4710MQ CPU @ 2.50GHz</code></pre>  </div> | 
