diff options
| author | Johannes Ranke <jranke@uni-bremen.de> | 2015-06-21 18:16:08 +0200 | 
|---|---|---|
| committer | Johannes Ranke <jranke@uni-bremen.de> | 2015-06-21 18:16:08 +0200 | 
| commit | 5bd8716b2e4c880b798d1e5e231d49816bbdebd1 (patch) | |
| tree | 0e1b51583d185f191e91d8358d5660e2a17f513b /vignettes/compiled_models.html | |
| parent | 46b8c7507d2d5fbf0741aeade5b0e7b0614f753f (diff) | |
Rebuild vignettes with the released package installed
Diffstat (limited to 'vignettes/compiled_models.html')
| -rw-r--r-- | vignettes/compiled_models.html | 42 | 
1 files changed, 21 insertions, 21 deletions
| diff --git a/vignettes/compiled_models.html b/vignettes/compiled_models.html index e6f21b09..5fcd88fb 100644 --- a/vignettes/compiled_models.html +++ b/vignettes/compiled_models.html @@ -94,20 +94,20 @@ mb.1 <- microbenchmark(  smb.1 <- summary(mb.1)[-1]  rownames(smb.1) <- c("deSolve, not compiled", "Eigenvalue based", "deSolve, compiled")  print(smb.1)</code></pre> -<pre><code>##                            min        lq      mean    median        uq -## deSolve, not compiled 4969.585 5033.7311 5092.7389 5097.8773 5154.3160 -## Eigenvalue based       868.731  891.7239  909.6449  914.7169  930.1018 -## deSolve, compiled     4935.049 4935.4796 4968.2150 4935.9097 4984.7978 +<pre><code>##                             min        lq      mean    median        uq +## deSolve, not compiled 6980.8002 6996.4739 7024.5611 7012.1476 7046.4415 +## Eigenvalue based       925.3350  928.9405  951.8405  932.5460  965.0932 +## deSolve, compiled      747.2635  761.9405  771.4339  776.6174  783.5191  ##                             max neval -## deSolve, not compiled 5210.7547     3 -## Eigenvalue based       945.4867     3 -## deSolve, compiled     5033.6858     3</code></pre> -<p>We see that using the compiled model is almost a factor of 8 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p> +## deSolve, not compiled 7080.7354     3 +## Eigenvalue based       997.6404     3 +## deSolve, compiled      790.4207     3</code></pre> +<p>We see that using the compiled model is by a factor of 9 faster than using the R version with the default ode solver, and it is even faster than the Eigenvalue based solution implemented in R which does not need iterative solution of the ODEs:</p>  <pre class="r"><code>smb.1["median"]/smb.1["deSolve, compiled", "median"]</code></pre> -<pre><code>##                          median -## deSolve, not compiled 1.0328141 -## Eigenvalue based      0.1853188 -## deSolve, compiled     1.0000000</code></pre> +<pre><code>##                         median +## deSolve, not compiled 9.029089 +## Eigenvalue based      1.200779 +## deSolve, compiled     1.000000</code></pre>  </div>  <div id="benchmark-for-a-model-that-can-not-be-solved-with-eigenvalues" class="section level1">  <h1>Benchmark for a model that can not be solved with Eigenvalues</h1> @@ -124,16 +124,16 @@ smb.2 <- summary(mb.2)[-1]  rownames(smb.2) <- c("deSolve, not compiled", "deSolve, compiled")  print(smb.2)</code></pre>  <pre><code>##                             min        lq      mean    median        uq -## deSolve, not compiled 11.745276 11.754288 11.820726 11.763300 11.858451 -## deSolve, compiled      1.385829  1.386407  1.400841  1.386985  1.408347 -##                            max neval -## deSolve, not compiled 11.95360     3 -## deSolve, compiled      1.42971     3</code></pre> +## deSolve, not compiled 14.127630 14.245064 14.298201 14.362497 14.383486 +## deSolve, compiled      1.354744  1.362167  1.366362  1.369589  1.372171 +##                             max neval +## deSolve, not compiled 14.404474     3 +## deSolve, compiled      1.374752     3</code></pre>  <pre class="r"><code>smb.2["median"]/smb.2["deSolve, compiled", "median"]</code></pre> -<pre><code>##                       median -## deSolve, not compiled 8.4812 -## deSolve, compiled     1.0000</code></pre> -<p>Here we get a performance benefit of more than a factor of 10 using the version of the differential equation model compiled from C code using the inline package!</p> +<pre><code>##                         median +## deSolve, not compiled 10.48672 +## deSolve, compiled      1.00000</code></pre> +<p>Here we get a performance benefit of a factor of 10.5 using the version of the differential equation model compiled from C code using the inline package!</p>  </div> | 
