aboutsummaryrefslogtreecommitdiff
path: root/docs/dev/reference/ds_mixed.html
diff options
context:
space:
mode:
Diffstat (limited to 'docs/dev/reference/ds_mixed.html')
-rw-r--r--docs/dev/reference/ds_mixed.html208
1 files changed, 208 insertions, 0 deletions
diff --git a/docs/dev/reference/ds_mixed.html b/docs/dev/reference/ds_mixed.html
new file mode 100644
index 00000000..875949dd
--- /dev/null
+++ b/docs/dev/reference/ds_mixed.html
@@ -0,0 +1,208 @@
+<!DOCTYPE html>
+<!-- Generated by pkgdown: do not edit by hand --><html lang="en"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><meta charset="utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge"><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"><title>Synthetic data for hierarchical kinetic degradation models — ds_mixed • mkin</title><script src="../deps/jquery-3.6.0/jquery-3.6.0.min.js"></script><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"><link href="../deps/bootstrap-5.3.1/bootstrap.min.css" rel="stylesheet"><script src="../deps/bootstrap-5.3.1/bootstrap.bundle.min.js"></script><link href="../deps/font-awesome-6.5.2/css/all.min.css" rel="stylesheet"><link href="../deps/font-awesome-6.5.2/css/v4-shims.min.css" rel="stylesheet"><script src="../deps/headroom-0.11.0/headroom.min.js"></script><script src="../deps/headroom-0.11.0/jQuery.headroom.min.js"></script><script src="../deps/bootstrap-toc-1.0.1/bootstrap-toc.min.js"></script><script src="../deps/clipboard.js-2.0.11/clipboard.min.js"></script><script src="../deps/search-1.0.0/autocomplete.jquery.min.js"></script><script src="../deps/search-1.0.0/fuse.min.js"></script><script src="../deps/search-1.0.0/mark.min.js"></script><!-- pkgdown --><script src="../pkgdown.js"></script><meta property="og:title" content="Synthetic data for hierarchical kinetic degradation models — ds_mixed"><meta name="description" content="The R code used to create this data object is installed with this package in
+the 'dataset_generation' directory."><meta property="og:description" content="The R code used to create this data object is installed with this package in
+the 'dataset_generation' directory."><meta name="robots" content="noindex"></head><body>
+ <a href="#main" class="visually-hidden-focusable">Skip to contents</a>
+
+
+ <nav class="navbar navbar-expand-lg fixed-top bg-light" data-bs-theme="default" aria-label="Site navigation"><div class="container">
+
+ <a class="navbar-brand me-2" href="../index.html">mkin</a>
+
+ <small class="nav-text text-info me-auto" data-bs-toggle="tooltip" data-bs-placement="bottom" title="In-development version">1.2.10</small>
+
+
+ <button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#navbar" aria-controls="navbar" aria-expanded="false" aria-label="Toggle navigation">
+ <span class="navbar-toggler-icon"></span>
+ </button>
+
+ <div id="navbar" class="collapse navbar-collapse ms-3">
+ <ul class="navbar-nav me-auto"><li class="active nav-item"><a class="nav-link" href="../reference/index.html">Reference</a></li>
+<li class="nav-item dropdown">
+ <button class="nav-link dropdown-toggle" type="button" id="dropdown-articles" data-bs-toggle="dropdown" aria-expanded="false" aria-haspopup="true">Articles</button>
+ <ul class="dropdown-menu" aria-labelledby="dropdown-articles"><li><a class="dropdown-item" href="../articles/mkin.html">Introduction to mkin</a></li>
+ <li><hr class="dropdown-divider"></li>
+ <li><h6 class="dropdown-header" data-toc-skip>Example evaluations with (generalised) nonlinear least squares</h6></li>
+ <li><a class="dropdown-item" href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a></li>
+ <li><a class="dropdown-item" href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a></li>
+ <li><a class="dropdown-item" href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a></li>
+ <li><hr class="dropdown-divider"></li>
+ <li><h6 class="dropdown-header" data-toc-skip>Example evaluations with hierarchical models (nonlinear mixed-effects models)</h6></li>
+ <li><a class="dropdown-item" href="../articles/prebuilt/2022_dmta_parent.html">Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P</a></li>
+ <li><a class="dropdown-item" href="../articles/prebuilt/2022_dmta_pathway.html">Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P</a></li>
+ <li><a class="dropdown-item" href="../articles/prebuilt/2023_mesotrione_parent.html">Testing covariate modelling in hierarchical parent degradation kinetics with residue data on mesotrione</a></li>
+ <li><a class="dropdown-item" href="../articles/prebuilt/2022_cyan_pathway.html">Testing hierarchical pathway kinetics with residue data on cyantraniliprole</a></li>
+ <li><a class="dropdown-item" href="../articles/web_only/dimethenamid_2018.html">Comparison of saemix and nlme evaluations of dimethenamid data from 2018</a></li>
+ <li><a class="dropdown-item" href="../articles/web_only/multistart.html">Short demo of the multistart method</a></li>
+ <li><hr class="dropdown-divider"></li>
+ <li><h6 class="dropdown-header" data-toc-skip>Performance</h6></li>
+ <li><a class="dropdown-item" href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a></li>
+ <li><a class="dropdown-item" href="../articles/web_only/benchmarks.html">Benchmark timings for mkin</a></li>
+ <li><a class="dropdown-item" href="../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a></li>
+ <li><hr class="dropdown-divider"></li>
+ <li><h6 class="dropdown-header" data-toc-skip>Miscellaneous</h6></li>
+ <li><a class="dropdown-item" href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a></li>
+ <li><a class="dropdown-item" href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a></li>
+ </ul></li>
+<li class="nav-item"><a class="nav-link" href="../coverage/coverage.html">Test coverage</a></li>
+<li class="nav-item"><a class="nav-link" href="../news/index.html">News</a></li>
+ </ul><ul class="navbar-nav"><li class="nav-item"><form class="form-inline" role="search">
+ <input class="form-control" type="search" name="search-input" id="search-input" autocomplete="off" aria-label="Search site" placeholder="Search for" data-search-index="../search.json"></form></li>
+<li class="nav-item"><a class="external-link nav-link" href="https://github.com/jranke/mkin/" aria-label="GitHub"><span class="fa fab fa-github fa-lg"></span></a></li>
+ </ul></div>
+
+
+ </div>
+</nav><div class="container template-reference-topic">
+<div class="row">
+ <main id="main" class="col-md-9"><div class="page-header">
+
+ <h1>Synthetic data for hierarchical kinetic degradation models</h1>
+ <small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/R/ds_mixed.R" class="external-link"><code>R/ds_mixed.R</code></a></small>
+ <div class="d-none name"><code>ds_mixed.Rd</code></div>
+ </div>
+
+ <div class="ref-description section level2">
+ <p>The R code used to create this data object is installed with this package in
+the 'dataset_generation' directory.</p>
+ </div>
+
+
+
+ <div class="section level2">
+ <h2 id="ref-examples">Examples<a class="anchor" aria-label="anchor" href="#ref-examples"></a></h2>
+ <div class="sourceCode"><pre class="sourceCode r"><code><span class="r-in"><span><span class="co"># \dontrun{</span></span></span>
+<span class="r-in"><span> <span class="va">sfo_mmkin</span> <span class="op">&lt;-</span> <span class="fu"><a href="mmkin.html">mmkin</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="va">ds_sfo</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>, error_model <span class="op">=</span> <span class="st">"tc"</span>, cores <span class="op">=</span> <span class="fl">15</span><span class="op">)</span></span></span>
+<span class="r-in"><span> <span class="va">sfo_saem</span> <span class="op">&lt;-</span> <span class="fu"><a href="saem.html">saem</a></span><span class="op">(</span><span class="va">sfo_mmkin</span>, no_random_effect <span class="op">=</span> <span class="st">"parent_0"</span><span class="op">)</span></span></span>
+<span class="r-in"><span> <span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">sfo_saem</span><span class="op">)</span></span></span>
+<span class="r-plt img"><img src="ds_mixed-1.png" alt="" width="700" height="433"></span>
+<span class="r-in"><span><span class="co"># }</span></span></span>
+<span class="r-in"><span></span></span>
+<span class="r-in"><span><span class="co"># This is the code used to generate the datasets</span></span></span>
+<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/base/cat.html" class="external-link">cat</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/readLines.html" class="external-link">readLines</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/system.file.html" class="external-link">system.file</a></span><span class="op">(</span><span class="st">"dataset_generation/ds_mixed.R"</span>, package <span class="op">=</span> <span class="st">"mkin"</span><span class="op">)</span><span class="op">)</span>, sep <span class="op">=</span> <span class="st">"\n"</span><span class="op">)</span></span></span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> # Synthetic data for hierarchical kinetic models</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> # Refactored version of the code previously in tests/testthat/setup_script.R</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> # The number of datasets was 3 for FOMC, and 10 for HS in that script, now it</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> # is always 15 for consistency</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> </span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> library(mkin) # We use mkinmod and mkinpredict</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> n &lt;- 15</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> log_sd &lt;- 0.3</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> err_1 = list(const = 1, prop = 0.05)</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> tc &lt;- function(value) sigma_twocomp(value, err_1$const, err_1$prop)</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> const &lt;- function(value) 2</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> </span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> set.seed(123456)</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> SFO &lt;- mkinmod(parent = mkinsub("SFO"))</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> sfo_pop &lt;- list(parent_0 = 100, k_parent = 0.03)</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> sfo_parms &lt;- as.matrix(data.frame(</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> k_parent = rlnorm(n, log(sfo_pop$k_parent), log_sd)))</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> set.seed(123456)</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> ds_sfo &lt;- lapply(1:n, function(i) {</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> ds_mean &lt;- mkinpredict(SFO, sfo_parms[i, ],</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> c(parent = sfo_pop$parent_0), sampling_times)</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> add_err(ds_mean, tc, n = 1)[[1]]</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> })</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> attr(ds_sfo, "pop") &lt;- sfo_pop</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> attr(ds_sfo, "parms") &lt;- sfo_parms</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> </span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> set.seed(123456)</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> FOMC &lt;- mkinmod(parent = mkinsub("FOMC"))</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> fomc_pop &lt;- list(parent_0 = 100, alpha = 2, beta = 8)</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> fomc_parms &lt;- as.matrix(data.frame(</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> alpha = rlnorm(n, log(fomc_pop$alpha), 0.4),</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> beta = rlnorm(n, log(fomc_pop$beta), 0.2)))</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> set.seed(123456)</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> ds_fomc &lt;- lapply(1:n, function(i) {</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> ds_mean &lt;- mkinpredict(FOMC, fomc_parms[i, ],</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> c(parent = fomc_pop$parent_0), sampling_times)</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> add_err(ds_mean, tc, n = 1)[[1]]</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> })</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> attr(ds_fomc, "pop") &lt;- fomc_pop</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> attr(ds_fomc, "parms") &lt;- fomc_parms</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> </span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> set.seed(123456)</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> DFOP &lt;- mkinmod(parent = mkinsub("DFOP"))</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> dfop_pop &lt;- list(parent_0 = 100, k1 = 0.06, k2 = 0.015, g = 0.4)</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> dfop_parms &lt;- as.matrix(data.frame(</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> k1 = rlnorm(n, log(dfop_pop$k1), log_sd),</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> k2 = rlnorm(n, log(dfop_pop$k2), log_sd),</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> g = plogis(rnorm(n, qlogis(dfop_pop$g), log_sd))))</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> set.seed(123456)</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> ds_dfop &lt;- lapply(1:n, function(i) {</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> ds_mean &lt;- mkinpredict(DFOP, dfop_parms[i, ],</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> c(parent = dfop_pop$parent_0), sampling_times)</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> add_err(ds_mean, tc, n = 1)[[1]]</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> })</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> attr(ds_dfop, "pop") &lt;- dfop_pop</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> attr(ds_dfop, "parms") &lt;- dfop_parms</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> </span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> set.seed(123456)</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> HS &lt;- mkinmod(parent = mkinsub("HS"))</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> hs_pop &lt;- list(parent_0 = 100, k1 = 0.08, k2 = 0.01, tb = 15)</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> hs_parms &lt;- as.matrix(data.frame(</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> k1 = rlnorm(n, log(hs_pop$k1), log_sd),</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> k2 = rlnorm(n, log(hs_pop$k2), log_sd),</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> tb = rlnorm(n, log(hs_pop$tb), 0.1)))</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> set.seed(123456)</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> ds_hs &lt;- lapply(1:n, function(i) {</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> ds_mean &lt;- mkinpredict(HS, hs_parms[i, ],</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> c(parent = hs_pop$parent_0), sampling_times)</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> add_err(ds_mean, const, n = 1)[[1]]</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> })</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> attr(ds_hs, "pop") &lt;- hs_pop</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> attr(ds_hs, "parms") &lt;- hs_parms</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> </span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> set.seed(123456)</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> DFOP_SFO &lt;- mkinmod(</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> parent = mkinsub("DFOP", "m1"),</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> m1 = mkinsub("SFO"),</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> quiet = TRUE)</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> dfop_sfo_pop &lt;- list(parent_0 = 100,</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> k_m1 = 0.007, f_parent_to_m1 = 0.5,</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> k1 = 0.1, k2 = 0.02, g = 0.5)</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> dfop_sfo_parms &lt;- as.matrix(data.frame(</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> k1 = rlnorm(n, log(dfop_sfo_pop$k1), log_sd),</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> k2 = rlnorm(n, log(dfop_sfo_pop$k2), log_sd),</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> g = plogis(rnorm(n, qlogis(dfop_sfo_pop$g), log_sd)),</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> f_parent_to_m1 = plogis(rnorm(n,</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> qlogis(dfop_sfo_pop$f_parent_to_m1), log_sd)),</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> k_m1 = rlnorm(n, log(dfop_sfo_pop$k_m1), log_sd)))</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> ds_dfop_sfo_mean &lt;- lapply(1:n,</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> function(i) {</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> mkinpredict(DFOP_SFO, dfop_sfo_parms[i, ],</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> c(parent = dfop_sfo_pop$parent_0, m1 = 0), sampling_times)</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> }</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> )</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> set.seed(123456)</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> ds_dfop_sfo &lt;- lapply(ds_dfop_sfo_mean, function(ds) {</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> add_err(ds,</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> sdfunc = function(value) sqrt(err_1$const^2 + value^2 * err_1$prop^2),</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> n = 1, secondary = "m1")[[1]]</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> })</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> attr(ds_dfop_sfo, "pop") &lt;- dfop_sfo_pop</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> attr(ds_dfop_sfo, "parms") &lt;- dfop_sfo_parms</span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> </span>
+<span class="r-out co"><span class="r-pr">#&gt;</span> #save(ds_sfo, ds_fomc, ds_dfop, ds_hs, ds_dfop_sfo, file = "data/ds_mixed.rda", version = 2)</span>
+</code></pre></div>
+ </div>
+ </main></div>
+
+
+ <footer><div class="pkgdown-footer-left">
+ <p>Developed by Johannes Ranke.</p>
+</div>
+
+<div class="pkgdown-footer-right">
+ <p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.1.1.</p>
+</div>
+
+ </footer></div>
+
+
+
+
+
+ </body></html>
+

Contact - Imprint