aboutsummaryrefslogtreecommitdiff
path: root/man
diff options
context:
space:
mode:
Diffstat (limited to 'man')
-rw-r--r--man/mean_degparms.Rd27
-rw-r--r--man/nlme.Rd17
-rw-r--r--man/nlme.mmkin.Rd2
-rw-r--r--man/nlmixr.mmkin.Rd188
-rw-r--r--man/plot.mixed.mmkin.Rd5
-rw-r--r--man/summary.nlmixr.mmkin.Rd100
-rw-r--r--man/summary.saem.mmkin.Rd24
7 files changed, 334 insertions, 29 deletions
diff --git a/man/mean_degparms.Rd b/man/mean_degparms.Rd
new file mode 100644
index 00000000..92ed4c9d
--- /dev/null
+++ b/man/mean_degparms.Rd
@@ -0,0 +1,27 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/mean_degparms.R
+\name{mean_degparms}
+\alias{mean_degparms}
+\title{Calculate mean degradation parameters for an mmkin row object}
+\usage{
+mean_degparms(object, random = FALSE, test_log_parms = FALSE, conf.level = 0.6)
+}
+\arguments{
+\item{random}{Should a list with fixed and random effects be returned?}
+
+\item{test_log_parms}{If TRUE, log parameters are only considered in
+the mean calculations if their untransformed counterparts (most likely
+rate constants) pass the t-test for significant difference from zero.}
+
+\item{conf.level}{Possibility to adjust the required confidence level
+for parameter that are tested if requested by 'test_log_parms'.}
+}
+\value{
+If random is FALSE (default), a named vector containing mean values
+of the fitted degradation model parameters. If random is TRUE, a list with
+fixed and random effects, in the format required by the start argument of
+nlme for the case of a single grouping variable ds.
+}
+\description{
+Calculate mean degradation parameters for an mmkin row object
+}
diff --git a/man/nlme.Rd b/man/nlme.Rd
index c367868b..e87b7a00 100644
--- a/man/nlme.Rd
+++ b/man/nlme.Rd
@@ -2,36 +2,19 @@
% Please edit documentation in R/nlme.R
\name{nlme_function}
\alias{nlme_function}
-\alias{mean_degparms}
\alias{nlme_data}
\title{Helper functions to create nlme models from mmkin row objects}
\usage{
nlme_function(object)
-mean_degparms(object, random = FALSE, test_log_parms = FALSE, conf.level = 0.6)
-
nlme_data(object)
}
\arguments{
\item{object}{An mmkin row object containing several fits of the same model to different datasets}
-
-\item{random}{Should a list with fixed and random effects be returned?}
-
-\item{test_log_parms}{If TRUE, log parameters are only considered in
-the mean calculations if their untransformed counterparts (most likely
-rate constants) pass the t-test for significant difference from zero.}
-
-\item{conf.level}{Possibility to adjust the required confidence level
-for parameter that are tested if requested by 'test_log_parms'.}
}
\value{
A function that can be used with nlme
-If random is FALSE (default), a named vector containing mean values
-of the fitted degradation model parameters. If random is TRUE, a list with
-fixed and random effects, in the format required by the start argument of
-nlme for the case of a single grouping variable ds.
-
A \code{\link{groupedData}} object
}
\description{
diff --git a/man/nlme.mmkin.Rd b/man/nlme.mmkin.Rd
index 2fb0488a..a2b45efa 100644
--- a/man/nlme.mmkin.Rd
+++ b/man/nlme.mmkin.Rd
@@ -13,7 +13,7 @@
paste(el, 1, sep = "~")))),
random = pdDiag(fixed),
groups,
- start = mean_degparms(model, random = TRUE),
+ start = mean_degparms(model, random = TRUE, test_log_parms = TRUE),
correlation = NULL,
weights = NULL,
subset,
diff --git a/man/nlmixr.mmkin.Rd b/man/nlmixr.mmkin.Rd
new file mode 100644
index 00000000..86bbdc9f
--- /dev/null
+++ b/man/nlmixr.mmkin.Rd
@@ -0,0 +1,188 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/nlmixr.R
+\name{nlmixr.mmkin}
+\alias{nlmixr.mmkin}
+\alias{print.nlmixr.mmkin}
+\alias{nlmixr_model}
+\alias{nlmixr_data}
+\title{Fit nonlinear mixed models using nlmixr}
+\usage{
+\method{nlmixr}{mmkin}(
+ object,
+ data = NULL,
+ est = NULL,
+ control = list(),
+ table = tableControl(),
+ error_model = object[[1]]$err_mod,
+ test_log_parms = TRUE,
+ conf.level = 0.6,
+ ...,
+ save = NULL,
+ envir = parent.frame()
+)
+
+\method{print}{nlmixr.mmkin}(x, digits = max(3, getOption("digits") - 3), ...)
+
+nlmixr_model(
+ object,
+ est = c("saem", "focei"),
+ degparms_start = "auto",
+ test_log_parms = FALSE,
+ conf.level = 0.6,
+ error_model = object[[1]]$err_mod
+)
+
+nlmixr_data(object, ...)
+}
+\arguments{
+\item{object}{An \link{mmkin} row object containing several fits of the same
+\link{mkinmod} model to different datasets}
+
+\item{est}{Estimation method passed to \link[nlmixr:nlmixr]{nlmixr::nlmixr}}
+
+\item{control}{Passed to \link[nlmixr:nlmixr]{nlmixr::nlmixr}.}
+
+\item{test_log_parms}{If TRUE, an attempt is made to use more robust starting
+values for population parameters fitted as log parameters in mkin (like
+rate constants) by only considering rate constants that pass the t-test
+when calculating mean degradation parameters using \link{mean_degparms}.}
+
+\item{conf.level}{Possibility to adjust the required confidence level
+for parameter that are tested if requested by 'test_log_parms'.}
+
+\item{\dots}{Passed to \link{nlmixr_model}}
+
+\item{x}{An nlmixr.mmkin object to print}
+
+\item{digits}{Number of digits to use for printing}
+
+\item{degparms_start}{Parameter values given as a named numeric vector will
+be used to override the starting values obtained from the 'mmkin' object.}
+
+\item{solution_type}{Possibility to specify the solution type in case the
+automatic choice is not desired}
+}
+\value{
+An S3 object of class 'nlmixr.mmkin', containing the fitted
+\link[nlmixr:nlmixr]{nlmixr::nlmixr} object as a list component named 'nm'. The
+object also inherits from 'mixed.mmkin'.
+
+An function defining a model suitable for fitting with \link[nlmixr:nlmixr]{nlmixr::nlmixr}.
+
+An dataframe suitable for use with \link[nlmixr:nlmixr]{nlmixr::nlmixr}
+}
+\description{
+This function uses \code{\link[nlmixr:nlmixr]{nlmixr::nlmixr()}} as a backend for fitting nonlinear mixed
+effects models created from \link{mmkin} row objects using the Stochastic Approximation
+Expectation Maximisation algorithm (SAEM).
+}
+\details{
+An mmkin row object is essentially a list of mkinfit objects that have been
+obtained by fitting the same model to a list of datasets using \link{mkinfit}.
+}
+\examples{
+ds <- lapply(experimental_data_for_UBA_2019[6:10],
+ function(x) subset(x$data[c("name", "time", "value")]))
+names(ds) <- paste("Dataset", 6:10)
+f_mmkin_parent <- mmkin(c("SFO", "FOMC", "DFOP", "HS"), ds, quiet = TRUE, cores = 1)
+f_mmkin_parent_tc <- mmkin(c("SFO", "FOMC", "DFOP"), ds, error_model = "tc",
+ cores = 1, quiet = TRUE)
+
+f_nlmixr_sfo_saem <- nlmixr(f_mmkin_parent["SFO", ], est = "saem")
+f_nlmixr_sfo_focei <- nlmixr(f_mmkin_parent["SFO", ], est = "focei")
+
+f_nlmixr_fomc_saem <- nlmixr(f_mmkin_parent["FOMC", ], est = "saem")
+f_nlmixr_fomc_focei <- nlmixr(f_mmkin_parent["FOMC", ], est = "focei")
+
+f_nlmixr_dfop_saem <- nlmixr(f_mmkin_parent["DFOP", ], est = "saem")
+f_nlmixr_dfop_focei <- nlmixr(f_mmkin_parent["DFOP", ], est = "focei")
+
+f_nlmixr_hs_saem <- nlmixr(f_mmkin_parent["HS", ], est = "saem")
+f_nlmixr_hs_focei <- nlmixr(f_mmkin_parent["HS", ], est = "focei")
+
+f_nlmixr_fomc_saem_tc <- nlmixr(f_mmkin_parent_tc["FOMC", ], est = "saem")
+f_nlmixr_fomc_focei_tc <- nlmixr(f_mmkin_parent_tc["FOMC", ], est = "focei")
+
+AIC(
+ f_nlmixr_sfo_saem$nm, f_nlmixr_sfo_focei$nm,
+ f_nlmixr_fomc_saem$nm, f_nlmixr_fomc_focei$nm,
+ f_nlmixr_dfop_saem$nm, f_nlmixr_dfop_focei$nm,
+ f_nlmixr_hs_saem$nm, f_nlmixr_hs_focei$nm,
+ f_nlmixr_fomc_saem_tc$nm, f_nlmixr_fomc_focei_tc$nm)
+
+AIC(nlme(f_mmkin_parent["FOMC", ]))
+AIC(nlme(f_mmkin_parent["HS", ]))
+
+# nlme is comparable to nlmixr with focei, saem finds a better
+# solution, the two-component error model does not improve it
+plot(f_nlmixr_fomc_saem)
+
+\dontrun{
+sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),
+ A1 = mkinsub("SFO"))
+fomc_sfo <- mkinmod(parent = mkinsub("FOMC", "A1"),
+ A1 = mkinsub("SFO"))
+dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"),
+ A1 = mkinsub("SFO"))
+
+f_mmkin_const <- mmkin(list(
+ "SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo),
+ ds, quiet = TRUE, error_model = "const")
+f_mmkin_obs <- mmkin(list(
+ "SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo),
+ ds, quiet = TRUE, error_model = "obs")
+f_mmkin_tc <- mmkin(list(
+ "SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo),
+ ds, quiet = TRUE, error_model = "tc")
+
+# A single constant variance is currently only possible with est = 'focei' in nlmixr
+f_nlmixr_sfo_sfo_focei_const <- nlmixr(f_mmkin_const["SFO-SFO", ], est = "focei")
+f_nlmixr_fomc_sfo_focei_const <- nlmixr(f_mmkin_const["FOMC-SFO", ], est = "focei")
+f_nlmixr_dfop_sfo_focei_const <- nlmixr(f_mmkin_const["DFOP-SFO", ], est = "focei")
+
+# Variance by variable is supported by 'saem' and 'focei'
+f_nlmixr_fomc_sfo_saem_obs <- nlmixr(f_mmkin_obs["FOMC-SFO", ], est = "saem")
+f_nlmixr_fomc_sfo_focei_obs <- nlmixr(f_mmkin_obs["FOMC-SFO", ], est = "focei")
+f_nlmixr_dfop_sfo_saem_obs <- nlmixr(f_mmkin_obs["DFOP-SFO", ], est = "saem")
+f_nlmixr_dfop_sfo_focei_obs <- nlmixr(f_mmkin_obs["DFOP-SFO", ], est = "focei")
+
+# Identical two-component error for all variables is only possible with
+# est = 'focei' in nlmixr
+f_nlmixr_fomc_sfo_focei_tc <- nlmixr(f_mmkin_tc["FOMC-SFO", ], est = "focei")
+f_nlmixr_dfop_sfo_focei_tc <- nlmixr(f_mmkin_tc["DFOP-SFO", ], est = "focei")
+
+# Two-component error by variable is possible with both estimation methods
+# Variance by variable is supported by 'saem' and 'focei'
+f_nlmixr_fomc_sfo_saem_obs_tc <- nlmixr(f_mmkin_tc["FOMC-SFO", ], est = "saem",
+ error_model = "obs_tc")
+f_nlmixr_fomc_sfo_focei_obs_tc <- nlmixr(f_mmkin_tc["FOMC-SFO", ], est = "focei",
+ error_model = "obs_tc")
+f_nlmixr_dfop_sfo_saem_obs_tc <- nlmixr(f_mmkin_tc["DFOP-SFO", ], est = "saem",
+ error_model = "obs_tc")
+f_nlmixr_dfop_sfo_focei_obs_tc <- nlmixr(f_mmkin_tc["DFOP-SFO", ], est = "focei",
+ error_model = "obs_tc")
+
+AIC(
+ f_nlmixr_sfo_sfo_focei_const$nm,
+ f_nlmixr_fomc_sfo_focei_const$nm,
+ f_nlmixr_dfop_sfo_focei_const$nm,
+ f_nlmixr_fomc_sfo_saem_obs$nm,
+ f_nlmixr_fomc_sfo_focei_obs$nm,
+ f_nlmixr_dfop_sfo_saem_obs$nm,
+ f_nlmixr_dfop_sfo_focei_obs$nm,
+ f_nlmixr_fomc_sfo_focei_tc$nm,
+ f_nlmixr_dfop_sfo_focei_tc$nm,
+ f_nlmixr_fomc_sfo_saem_obs_tc$nm,
+ f_nlmixr_fomc_sfo_focei_obs_tc$nm,
+ f_nlmixr_dfop_sfo_saem_obs_tc$nm,
+ f_nlmixr_dfop_sfo_focei_obs_tc$nm
+)
+# Currently, FOMC-SFO with two-component error by variable fitted by focei gives the
+# lowest AIC
+plot(f_nlmixr_fomc_sfo_focei_obs_tc)
+summary(f_nlmixr_fomc_sfo_focei_obs_tc)
+}
+}
+\seealso{
+\link{summary.nlmixr.mmkin} \link{plot.mixed.mmkin}
+}
diff --git a/man/plot.mixed.mmkin.Rd b/man/plot.mixed.mmkin.Rd
index bcab3e74..d87ca22c 100644
--- a/man/plot.mixed.mmkin.Rd
+++ b/man/plot.mixed.mmkin.Rd
@@ -99,12 +99,17 @@ plot(f[, 3:4], standardized = TRUE)
# For this fit we need to increase pnlsMaxiter, and we increase the
# tolerance in order to speed up the fit for this example evaluation
+# It still takes 20 seconds to run
f_nlme <- nlme(f, control = list(pnlsMaxIter = 120, tolerance = 1e-3))
plot(f_nlme)
f_saem <- saem(f, transformations = "saemix")
plot(f_saem)
+f_obs <- mmkin(list("DFOP-SFO" = dfop_sfo), ds, quiet = TRUE, error_model = "obs")
+f_nlmix <- nlmix(f_obs)
+plot(f_nlmix)
+
# We can overlay the two variants if we generate predictions
pred_nlme <- mkinpredict(dfop_sfo,
f_nlme$bparms.optim[-1],
diff --git a/man/summary.nlmixr.mmkin.Rd b/man/summary.nlmixr.mmkin.Rd
new file mode 100644
index 00000000..03f0ffb2
--- /dev/null
+++ b/man/summary.nlmixr.mmkin.Rd
@@ -0,0 +1,100 @@
+% Generated by roxygen2: do not edit by hand
+% Please edit documentation in R/summary.nlmixr.mmkin.R
+\name{summary.nlmixr.mmkin}
+\alias{summary.nlmixr.mmkin}
+\title{Summary method for class "nlmixr.mmkin"}
+\usage{
+\method{summary}{nlmixr.mmkin}(object, data = FALSE, verbose = FALSE, distimes = TRUE, ...)
+}
+\arguments{
+\item{object}{an object of class \link{nlmix.mmkin}}
+
+\item{data}{logical, indicating whether the full data should be included in
+the summary.}
+
+\item{verbose}{Should the summary be verbose?}
+
+\item{distimes}{logical, indicating whether DT50 and DT90 values should be
+included.}
+
+\item{\dots}{optional arguments passed to methods like \code{print}.}
+
+\item{x}{an object of class \link{summary.nlmix.mmkin}}
+
+\item{digits}{Number of digits to use for printing}
+}
+\value{
+The summary function returns a list obtained in the fit, with at
+least the following additional components
+\item{nlmixrversion, mkinversion, Rversion}{The nlmixr, mkin and R versions used}
+\item{date.fit, date.summary}{The dates where the fit and the summary were
+produced}
+\item{diffs}{The differential equations used in the degradation model}
+\item{use_of_ff}{Was maximum or minimum use made of formation fractions}
+\item{data}{The data}
+\item{confint_trans}{Transformed parameters as used in the optimisation, with confidence intervals}
+\item{confint_back}{Backtransformed parameters, with confidence intervals if available}
+\item{confint_errmod}{Error model parameters with confidence intervals}
+\item{ff}{The estimated formation fractions derived from the fitted
+model.}
+\item{distimes}{The DT50 and DT90 values for each observed variable.}
+\item{SFORB}{If applicable, eigenvalues of SFORB components of the model.}
+The print method is called for its side effect, i.e. printing the summary.
+}
+\description{
+Lists model equations, initial parameter values, optimised parameters
+for fixed effects (population), random effects (deviations from the
+population mean) and residual error model, as well as the resulting
+endpoints such as formation fractions and DT50 values. Optionally
+(default is FALSE), the data are listed in full.
+}
+\examples{
+# Generate five datasets following DFOP-SFO kinetics
+sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
+dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "m1"),
+ m1 = mkinsub("SFO"), quiet = TRUE)
+set.seed(1234)
+k1_in <- rlnorm(5, log(0.1), 0.3)
+k2_in <- rlnorm(5, log(0.02), 0.3)
+g_in <- plogis(rnorm(5, qlogis(0.5), 0.3))
+f_parent_to_m1_in <- plogis(rnorm(5, qlogis(0.3), 0.3))
+k_m1_in <- rlnorm(5, log(0.02), 0.3)
+
+pred_dfop_sfo <- function(k1, k2, g, f_parent_to_m1, k_m1) {
+ mkinpredict(dfop_sfo,
+ c(k1 = k1, k2 = k2, g = g, f_parent_to_m1 = f_parent_to_m1, k_m1 = k_m1),
+ c(parent = 100, m1 = 0),
+ sampling_times)
+}
+
+ds_mean_dfop_sfo <- lapply(1:5, function(i) {
+ mkinpredict(dfop_sfo,
+ c(k1 = k1_in[i], k2 = k2_in[i], g = g_in[i],
+ f_parent_to_m1 = f_parent_to_m1_in[i], k_m1 = k_m1_in[i]),
+ c(parent = 100, m1 = 0),
+ sampling_times)
+})
+names(ds_mean_dfop_sfo) <- paste("ds", 1:5)
+
+ds_syn_dfop_sfo <- lapply(ds_mean_dfop_sfo, function(ds) {
+ add_err(ds,
+ sdfunc = function(value) sqrt(1^2 + value^2 * 0.07^2),
+ n = 1)[[1]]
+})
+
+\dontrun{
+# Evaluate using mmkin and nlmixr
+f_mmkin_dfop_sfo <- mmkin(list(dfop_sfo), ds_syn_dfop_sfo,
+ quiet = TRUE, error_model = "obs", cores = 5)
+f_saemix_dfop_sfo <- mkin::saem(f_mmkin_dfop_sfo)
+f_nlme_dfop_sfo <- mkin::nlme(f_mmkin_dfop_sfo)
+f_nlmixr_dfop_sfo_saem <- nlmixr(f_mmkin_dfop_sfo, est = "saem")
+#f_nlmixr_dfop_sfo_focei <- nlmixr(f_mmkin_dfop_sfo, est = "focei")
+summary(f_nlmixr_dfop_sfo, data = TRUE)
+}
+
+}
+\author{
+Johannes Ranke for the mkin specific parts
+nlmixr authors for the parts inherited from nlmixr.
+}
diff --git a/man/summary.saem.mmkin.Rd b/man/summary.saem.mmkin.Rd
index 67cb3cbb..86938d31 100644
--- a/man/summary.saem.mmkin.Rd
+++ b/man/summary.saem.mmkin.Rd
@@ -1,30 +1,32 @@
% Generated by roxygen2: do not edit by hand
-% Please edit documentation in R/summary.saem.mmkin.R
-\name{summary.saem.mmkin}
-\alias{summary.saem.mmkin}
+% Please edit documentation in R/summary.nlmixr.mmkin.R, R/summary.saem.mmkin.R
+\name{print.summary.saem.mmkin}
\alias{print.summary.saem.mmkin}
+\alias{summary.saem.mmkin}
\title{Summary method for class "saem.mmkin"}
\usage{
+\method{print}{summary.saem.mmkin}(x, digits = max(3, getOption("digits") - 3), verbose = x$verbose, ...)
+
\method{summary}{saem.mmkin}(object, data = FALSE, verbose = FALSE, distimes = TRUE, ...)
\method{print}{summary.saem.mmkin}(x, digits = max(3, getOption("digits") - 3), verbose = x$verbose, ...)
}
\arguments{
-\item{object}{an object of class \link{saem.mmkin}}
+\item{x}{an object of class \link{summary.saem.mmkin}}
-\item{data}{logical, indicating whether the full data should be included in
-the summary.}
+\item{digits}{Number of digits to use for printing}
\item{verbose}{Should the summary be verbose?}
-\item{distimes}{logical, indicating whether DT50 and DT90 values should be
-included.}
-
\item{\dots}{optional arguments passed to methods like \code{print}.}
-\item{x}{an object of class \link{summary.saem.mmkin}}
+\item{object}{an object of class \link{saem.mmkin}}
-\item{digits}{Number of digits to use for printing}
+\item{data}{logical, indicating whether the full data should be included in
+the summary.}
+
+\item{distimes}{logical, indicating whether DT50 and DT90 values should be
+included.}
}
\value{
The summary function returns a list based on the \link[saemix:SaemixObject-class]{saemix::SaemixObject}

Contact - Imprint