diff options
Diffstat (limited to 'man')
-rw-r--r-- | man/mean_degparms.Rd | 27 | ||||
-rw-r--r-- | man/nlme.Rd | 17 | ||||
-rw-r--r-- | man/nlme.mmkin.Rd | 2 | ||||
-rw-r--r-- | man/nlmixr.mmkin.Rd | 188 | ||||
-rw-r--r-- | man/plot.mixed.mmkin.Rd | 5 | ||||
-rw-r--r-- | man/summary.nlmixr.mmkin.Rd | 100 | ||||
-rw-r--r-- | man/summary.saem.mmkin.Rd | 24 |
7 files changed, 334 insertions, 29 deletions
diff --git a/man/mean_degparms.Rd b/man/mean_degparms.Rd new file mode 100644 index 00000000..92ed4c9d --- /dev/null +++ b/man/mean_degparms.Rd @@ -0,0 +1,27 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/mean_degparms.R +\name{mean_degparms} +\alias{mean_degparms} +\title{Calculate mean degradation parameters for an mmkin row object} +\usage{ +mean_degparms(object, random = FALSE, test_log_parms = FALSE, conf.level = 0.6) +} +\arguments{ +\item{random}{Should a list with fixed and random effects be returned?} + +\item{test_log_parms}{If TRUE, log parameters are only considered in +the mean calculations if their untransformed counterparts (most likely +rate constants) pass the t-test for significant difference from zero.} + +\item{conf.level}{Possibility to adjust the required confidence level +for parameter that are tested if requested by 'test_log_parms'.} +} +\value{ +If random is FALSE (default), a named vector containing mean values +of the fitted degradation model parameters. If random is TRUE, a list with +fixed and random effects, in the format required by the start argument of +nlme for the case of a single grouping variable ds. +} +\description{ +Calculate mean degradation parameters for an mmkin row object +} diff --git a/man/nlme.Rd b/man/nlme.Rd index c367868b..e87b7a00 100644 --- a/man/nlme.Rd +++ b/man/nlme.Rd @@ -2,36 +2,19 @@ % Please edit documentation in R/nlme.R \name{nlme_function} \alias{nlme_function} -\alias{mean_degparms} \alias{nlme_data} \title{Helper functions to create nlme models from mmkin row objects} \usage{ nlme_function(object) -mean_degparms(object, random = FALSE, test_log_parms = FALSE, conf.level = 0.6) - nlme_data(object) } \arguments{ \item{object}{An mmkin row object containing several fits of the same model to different datasets} - -\item{random}{Should a list with fixed and random effects be returned?} - -\item{test_log_parms}{If TRUE, log parameters are only considered in -the mean calculations if their untransformed counterparts (most likely -rate constants) pass the t-test for significant difference from zero.} - -\item{conf.level}{Possibility to adjust the required confidence level -for parameter that are tested if requested by 'test_log_parms'.} } \value{ A function that can be used with nlme -If random is FALSE (default), a named vector containing mean values -of the fitted degradation model parameters. If random is TRUE, a list with -fixed and random effects, in the format required by the start argument of -nlme for the case of a single grouping variable ds. - A \code{\link{groupedData}} object } \description{ diff --git a/man/nlme.mmkin.Rd b/man/nlme.mmkin.Rd index 2fb0488a..a2b45efa 100644 --- a/man/nlme.mmkin.Rd +++ b/man/nlme.mmkin.Rd @@ -13,7 +13,7 @@ paste(el, 1, sep = "~")))), random = pdDiag(fixed), groups, - start = mean_degparms(model, random = TRUE), + start = mean_degparms(model, random = TRUE, test_log_parms = TRUE), correlation = NULL, weights = NULL, subset, diff --git a/man/nlmixr.mmkin.Rd b/man/nlmixr.mmkin.Rd new file mode 100644 index 00000000..86bbdc9f --- /dev/null +++ b/man/nlmixr.mmkin.Rd @@ -0,0 +1,188 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/nlmixr.R +\name{nlmixr.mmkin} +\alias{nlmixr.mmkin} +\alias{print.nlmixr.mmkin} +\alias{nlmixr_model} +\alias{nlmixr_data} +\title{Fit nonlinear mixed models using nlmixr} +\usage{ +\method{nlmixr}{mmkin}( + object, + data = NULL, + est = NULL, + control = list(), + table = tableControl(), + error_model = object[[1]]$err_mod, + test_log_parms = TRUE, + conf.level = 0.6, + ..., + save = NULL, + envir = parent.frame() +) + +\method{print}{nlmixr.mmkin}(x, digits = max(3, getOption("digits") - 3), ...) + +nlmixr_model( + object, + est = c("saem", "focei"), + degparms_start = "auto", + test_log_parms = FALSE, + conf.level = 0.6, + error_model = object[[1]]$err_mod +) + +nlmixr_data(object, ...) +} +\arguments{ +\item{object}{An \link{mmkin} row object containing several fits of the same +\link{mkinmod} model to different datasets} + +\item{est}{Estimation method passed to \link[nlmixr:nlmixr]{nlmixr::nlmixr}} + +\item{control}{Passed to \link[nlmixr:nlmixr]{nlmixr::nlmixr}.} + +\item{test_log_parms}{If TRUE, an attempt is made to use more robust starting +values for population parameters fitted as log parameters in mkin (like +rate constants) by only considering rate constants that pass the t-test +when calculating mean degradation parameters using \link{mean_degparms}.} + +\item{conf.level}{Possibility to adjust the required confidence level +for parameter that are tested if requested by 'test_log_parms'.} + +\item{\dots}{Passed to \link{nlmixr_model}} + +\item{x}{An nlmixr.mmkin object to print} + +\item{digits}{Number of digits to use for printing} + +\item{degparms_start}{Parameter values given as a named numeric vector will +be used to override the starting values obtained from the 'mmkin' object.} + +\item{solution_type}{Possibility to specify the solution type in case the +automatic choice is not desired} +} +\value{ +An S3 object of class 'nlmixr.mmkin', containing the fitted +\link[nlmixr:nlmixr]{nlmixr::nlmixr} object as a list component named 'nm'. The +object also inherits from 'mixed.mmkin'. + +An function defining a model suitable for fitting with \link[nlmixr:nlmixr]{nlmixr::nlmixr}. + +An dataframe suitable for use with \link[nlmixr:nlmixr]{nlmixr::nlmixr} +} +\description{ +This function uses \code{\link[nlmixr:nlmixr]{nlmixr::nlmixr()}} as a backend for fitting nonlinear mixed +effects models created from \link{mmkin} row objects using the Stochastic Approximation +Expectation Maximisation algorithm (SAEM). +} +\details{ +An mmkin row object is essentially a list of mkinfit objects that have been +obtained by fitting the same model to a list of datasets using \link{mkinfit}. +} +\examples{ +ds <- lapply(experimental_data_for_UBA_2019[6:10], + function(x) subset(x$data[c("name", "time", "value")])) +names(ds) <- paste("Dataset", 6:10) +f_mmkin_parent <- mmkin(c("SFO", "FOMC", "DFOP", "HS"), ds, quiet = TRUE, cores = 1) +f_mmkin_parent_tc <- mmkin(c("SFO", "FOMC", "DFOP"), ds, error_model = "tc", + cores = 1, quiet = TRUE) + +f_nlmixr_sfo_saem <- nlmixr(f_mmkin_parent["SFO", ], est = "saem") +f_nlmixr_sfo_focei <- nlmixr(f_mmkin_parent["SFO", ], est = "focei") + +f_nlmixr_fomc_saem <- nlmixr(f_mmkin_parent["FOMC", ], est = "saem") +f_nlmixr_fomc_focei <- nlmixr(f_mmkin_parent["FOMC", ], est = "focei") + +f_nlmixr_dfop_saem <- nlmixr(f_mmkin_parent["DFOP", ], est = "saem") +f_nlmixr_dfop_focei <- nlmixr(f_mmkin_parent["DFOP", ], est = "focei") + +f_nlmixr_hs_saem <- nlmixr(f_mmkin_parent["HS", ], est = "saem") +f_nlmixr_hs_focei <- nlmixr(f_mmkin_parent["HS", ], est = "focei") + +f_nlmixr_fomc_saem_tc <- nlmixr(f_mmkin_parent_tc["FOMC", ], est = "saem") +f_nlmixr_fomc_focei_tc <- nlmixr(f_mmkin_parent_tc["FOMC", ], est = "focei") + +AIC( + f_nlmixr_sfo_saem$nm, f_nlmixr_sfo_focei$nm, + f_nlmixr_fomc_saem$nm, f_nlmixr_fomc_focei$nm, + f_nlmixr_dfop_saem$nm, f_nlmixr_dfop_focei$nm, + f_nlmixr_hs_saem$nm, f_nlmixr_hs_focei$nm, + f_nlmixr_fomc_saem_tc$nm, f_nlmixr_fomc_focei_tc$nm) + +AIC(nlme(f_mmkin_parent["FOMC", ])) +AIC(nlme(f_mmkin_parent["HS", ])) + +# nlme is comparable to nlmixr with focei, saem finds a better +# solution, the two-component error model does not improve it +plot(f_nlmixr_fomc_saem) + +\dontrun{ +sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"), + A1 = mkinsub("SFO")) +fomc_sfo <- mkinmod(parent = mkinsub("FOMC", "A1"), + A1 = mkinsub("SFO")) +dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"), + A1 = mkinsub("SFO")) + +f_mmkin_const <- mmkin(list( + "SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo), + ds, quiet = TRUE, error_model = "const") +f_mmkin_obs <- mmkin(list( + "SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo), + ds, quiet = TRUE, error_model = "obs") +f_mmkin_tc <- mmkin(list( + "SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo), + ds, quiet = TRUE, error_model = "tc") + +# A single constant variance is currently only possible with est = 'focei' in nlmixr +f_nlmixr_sfo_sfo_focei_const <- nlmixr(f_mmkin_const["SFO-SFO", ], est = "focei") +f_nlmixr_fomc_sfo_focei_const <- nlmixr(f_mmkin_const["FOMC-SFO", ], est = "focei") +f_nlmixr_dfop_sfo_focei_const <- nlmixr(f_mmkin_const["DFOP-SFO", ], est = "focei") + +# Variance by variable is supported by 'saem' and 'focei' +f_nlmixr_fomc_sfo_saem_obs <- nlmixr(f_mmkin_obs["FOMC-SFO", ], est = "saem") +f_nlmixr_fomc_sfo_focei_obs <- nlmixr(f_mmkin_obs["FOMC-SFO", ], est = "focei") +f_nlmixr_dfop_sfo_saem_obs <- nlmixr(f_mmkin_obs["DFOP-SFO", ], est = "saem") +f_nlmixr_dfop_sfo_focei_obs <- nlmixr(f_mmkin_obs["DFOP-SFO", ], est = "focei") + +# Identical two-component error for all variables is only possible with +# est = 'focei' in nlmixr +f_nlmixr_fomc_sfo_focei_tc <- nlmixr(f_mmkin_tc["FOMC-SFO", ], est = "focei") +f_nlmixr_dfop_sfo_focei_tc <- nlmixr(f_mmkin_tc["DFOP-SFO", ], est = "focei") + +# Two-component error by variable is possible with both estimation methods +# Variance by variable is supported by 'saem' and 'focei' +f_nlmixr_fomc_sfo_saem_obs_tc <- nlmixr(f_mmkin_tc["FOMC-SFO", ], est = "saem", + error_model = "obs_tc") +f_nlmixr_fomc_sfo_focei_obs_tc <- nlmixr(f_mmkin_tc["FOMC-SFO", ], est = "focei", + error_model = "obs_tc") +f_nlmixr_dfop_sfo_saem_obs_tc <- nlmixr(f_mmkin_tc["DFOP-SFO", ], est = "saem", + error_model = "obs_tc") +f_nlmixr_dfop_sfo_focei_obs_tc <- nlmixr(f_mmkin_tc["DFOP-SFO", ], est = "focei", + error_model = "obs_tc") + +AIC( + f_nlmixr_sfo_sfo_focei_const$nm, + f_nlmixr_fomc_sfo_focei_const$nm, + f_nlmixr_dfop_sfo_focei_const$nm, + f_nlmixr_fomc_sfo_saem_obs$nm, + f_nlmixr_fomc_sfo_focei_obs$nm, + f_nlmixr_dfop_sfo_saem_obs$nm, + f_nlmixr_dfop_sfo_focei_obs$nm, + f_nlmixr_fomc_sfo_focei_tc$nm, + f_nlmixr_dfop_sfo_focei_tc$nm, + f_nlmixr_fomc_sfo_saem_obs_tc$nm, + f_nlmixr_fomc_sfo_focei_obs_tc$nm, + f_nlmixr_dfop_sfo_saem_obs_tc$nm, + f_nlmixr_dfop_sfo_focei_obs_tc$nm +) +# Currently, FOMC-SFO with two-component error by variable fitted by focei gives the +# lowest AIC +plot(f_nlmixr_fomc_sfo_focei_obs_tc) +summary(f_nlmixr_fomc_sfo_focei_obs_tc) +} +} +\seealso{ +\link{summary.nlmixr.mmkin} \link{plot.mixed.mmkin} +} diff --git a/man/plot.mixed.mmkin.Rd b/man/plot.mixed.mmkin.Rd index bcab3e74..d87ca22c 100644 --- a/man/plot.mixed.mmkin.Rd +++ b/man/plot.mixed.mmkin.Rd @@ -99,12 +99,17 @@ plot(f[, 3:4], standardized = TRUE) # For this fit we need to increase pnlsMaxiter, and we increase the # tolerance in order to speed up the fit for this example evaluation +# It still takes 20 seconds to run f_nlme <- nlme(f, control = list(pnlsMaxIter = 120, tolerance = 1e-3)) plot(f_nlme) f_saem <- saem(f, transformations = "saemix") plot(f_saem) +f_obs <- mmkin(list("DFOP-SFO" = dfop_sfo), ds, quiet = TRUE, error_model = "obs") +f_nlmix <- nlmix(f_obs) +plot(f_nlmix) + # We can overlay the two variants if we generate predictions pred_nlme <- mkinpredict(dfop_sfo, f_nlme$bparms.optim[-1], diff --git a/man/summary.nlmixr.mmkin.Rd b/man/summary.nlmixr.mmkin.Rd new file mode 100644 index 00000000..03f0ffb2 --- /dev/null +++ b/man/summary.nlmixr.mmkin.Rd @@ -0,0 +1,100 @@ +% Generated by roxygen2: do not edit by hand +% Please edit documentation in R/summary.nlmixr.mmkin.R +\name{summary.nlmixr.mmkin} +\alias{summary.nlmixr.mmkin} +\title{Summary method for class "nlmixr.mmkin"} +\usage{ +\method{summary}{nlmixr.mmkin}(object, data = FALSE, verbose = FALSE, distimes = TRUE, ...) +} +\arguments{ +\item{object}{an object of class \link{nlmix.mmkin}} + +\item{data}{logical, indicating whether the full data should be included in +the summary.} + +\item{verbose}{Should the summary be verbose?} + +\item{distimes}{logical, indicating whether DT50 and DT90 values should be +included.} + +\item{\dots}{optional arguments passed to methods like \code{print}.} + +\item{x}{an object of class \link{summary.nlmix.mmkin}} + +\item{digits}{Number of digits to use for printing} +} +\value{ +The summary function returns a list obtained in the fit, with at +least the following additional components +\item{nlmixrversion, mkinversion, Rversion}{The nlmixr, mkin and R versions used} +\item{date.fit, date.summary}{The dates where the fit and the summary were +produced} +\item{diffs}{The differential equations used in the degradation model} +\item{use_of_ff}{Was maximum or minimum use made of formation fractions} +\item{data}{The data} +\item{confint_trans}{Transformed parameters as used in the optimisation, with confidence intervals} +\item{confint_back}{Backtransformed parameters, with confidence intervals if available} +\item{confint_errmod}{Error model parameters with confidence intervals} +\item{ff}{The estimated formation fractions derived from the fitted +model.} +\item{distimes}{The DT50 and DT90 values for each observed variable.} +\item{SFORB}{If applicable, eigenvalues of SFORB components of the model.} +The print method is called for its side effect, i.e. printing the summary. +} +\description{ +Lists model equations, initial parameter values, optimised parameters +for fixed effects (population), random effects (deviations from the +population mean) and residual error model, as well as the resulting +endpoints such as formation fractions and DT50 values. Optionally +(default is FALSE), the data are listed in full. +} +\examples{ +# Generate five datasets following DFOP-SFO kinetics +sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120) +dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "m1"), + m1 = mkinsub("SFO"), quiet = TRUE) +set.seed(1234) +k1_in <- rlnorm(5, log(0.1), 0.3) +k2_in <- rlnorm(5, log(0.02), 0.3) +g_in <- plogis(rnorm(5, qlogis(0.5), 0.3)) +f_parent_to_m1_in <- plogis(rnorm(5, qlogis(0.3), 0.3)) +k_m1_in <- rlnorm(5, log(0.02), 0.3) + +pred_dfop_sfo <- function(k1, k2, g, f_parent_to_m1, k_m1) { + mkinpredict(dfop_sfo, + c(k1 = k1, k2 = k2, g = g, f_parent_to_m1 = f_parent_to_m1, k_m1 = k_m1), + c(parent = 100, m1 = 0), + sampling_times) +} + +ds_mean_dfop_sfo <- lapply(1:5, function(i) { + mkinpredict(dfop_sfo, + c(k1 = k1_in[i], k2 = k2_in[i], g = g_in[i], + f_parent_to_m1 = f_parent_to_m1_in[i], k_m1 = k_m1_in[i]), + c(parent = 100, m1 = 0), + sampling_times) +}) +names(ds_mean_dfop_sfo) <- paste("ds", 1:5) + +ds_syn_dfop_sfo <- lapply(ds_mean_dfop_sfo, function(ds) { + add_err(ds, + sdfunc = function(value) sqrt(1^2 + value^2 * 0.07^2), + n = 1)[[1]] +}) + +\dontrun{ +# Evaluate using mmkin and nlmixr +f_mmkin_dfop_sfo <- mmkin(list(dfop_sfo), ds_syn_dfop_sfo, + quiet = TRUE, error_model = "obs", cores = 5) +f_saemix_dfop_sfo <- mkin::saem(f_mmkin_dfop_sfo) +f_nlme_dfop_sfo <- mkin::nlme(f_mmkin_dfop_sfo) +f_nlmixr_dfop_sfo_saem <- nlmixr(f_mmkin_dfop_sfo, est = "saem") +#f_nlmixr_dfop_sfo_focei <- nlmixr(f_mmkin_dfop_sfo, est = "focei") +summary(f_nlmixr_dfop_sfo, data = TRUE) +} + +} +\author{ +Johannes Ranke for the mkin specific parts +nlmixr authors for the parts inherited from nlmixr. +} diff --git a/man/summary.saem.mmkin.Rd b/man/summary.saem.mmkin.Rd index 67cb3cbb..86938d31 100644 --- a/man/summary.saem.mmkin.Rd +++ b/man/summary.saem.mmkin.Rd @@ -1,30 +1,32 @@ % Generated by roxygen2: do not edit by hand -% Please edit documentation in R/summary.saem.mmkin.R -\name{summary.saem.mmkin} -\alias{summary.saem.mmkin} +% Please edit documentation in R/summary.nlmixr.mmkin.R, R/summary.saem.mmkin.R +\name{print.summary.saem.mmkin} \alias{print.summary.saem.mmkin} +\alias{summary.saem.mmkin} \title{Summary method for class "saem.mmkin"} \usage{ +\method{print}{summary.saem.mmkin}(x, digits = max(3, getOption("digits") - 3), verbose = x$verbose, ...) + \method{summary}{saem.mmkin}(object, data = FALSE, verbose = FALSE, distimes = TRUE, ...) \method{print}{summary.saem.mmkin}(x, digits = max(3, getOption("digits") - 3), verbose = x$verbose, ...) } \arguments{ -\item{object}{an object of class \link{saem.mmkin}} +\item{x}{an object of class \link{summary.saem.mmkin}} -\item{data}{logical, indicating whether the full data should be included in -the summary.} +\item{digits}{Number of digits to use for printing} \item{verbose}{Should the summary be verbose?} -\item{distimes}{logical, indicating whether DT50 and DT90 values should be -included.} - \item{\dots}{optional arguments passed to methods like \code{print}.} -\item{x}{an object of class \link{summary.saem.mmkin}} +\item{object}{an object of class \link{saem.mmkin}} -\item{digits}{Number of digits to use for printing} +\item{data}{logical, indicating whether the full data should be included in +the summary.} + +\item{distimes}{logical, indicating whether DT50 and DT90 values should be +included.} } \value{ The summary function returns a list based on the \link[saemix:SaemixObject-class]{saemix::SaemixObject} |