aboutsummaryrefslogtreecommitdiff
path: root/vignettes/mkin.html
diff options
context:
space:
mode:
Diffstat (limited to 'vignettes/mkin.html')
-rw-r--r--vignettes/mkin.html219
1 files changed, 112 insertions, 107 deletions
diff --git a/vignettes/mkin.html b/vignettes/mkin.html
index bda45abb..3e5a004e 100644
--- a/vignettes/mkin.html
+++ b/vignettes/mkin.html
@@ -40,27 +40,27 @@ display: none;
</style>
<style type="text/css">
-code{white-space: pre-wrap;}
-span.smallcaps{font-variant: small-caps;}
-span.underline{text-decoration: underline;}
-div.column{display: inline-block; vertical-align: top; width: 50%;}
-div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
-ul.task-list{list-style: none;}
-</style>
+ code{white-space: pre-wrap;}
+ span.smallcaps{font-variant: small-caps;}
+ span.underline{text-decoration: underline;}
+ div.column{display: inline-block; vertical-align: top; width: 50%;}
+ div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
+ ul.task-list{list-style: none;}
+ </style>
<style type="text/css">
-code {
-white-space: pre;
-}
-.sourceCode {
-overflow: visible;
-}
+ code {
+ white-space: pre;
+ }
+ .sourceCode {
+ overflow: visible;
+ }
</style>
<style type="text/css" data-origin="pandoc">
pre > code.sourceCode { white-space: pre; position: relative; }
-pre > code.sourceCode > span { line-height: 1.25; }
+pre > code.sourceCode > span { display: inline-block; line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
@@ -71,57 +71,58 @@ div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
-pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
+pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
-{ counter-reset: source-line 0; }
+ { counter-reset: source-line 0; }
pre.numberSource code > span
-{ position: relative; left: -4em; counter-increment: source-line; }
+ { position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
-{ content: counter(source-line);
-position: relative; left: -1em; text-align: right; vertical-align: baseline;
-border: none; display: inline-block;
--webkit-touch-callout: none; -webkit-user-select: none;
--khtml-user-select: none; -moz-user-select: none;
--ms-user-select: none; user-select: none;
-padding: 0 4px; width: 4em;
-color: #aaaaaa;
-}
-pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
+ { content: counter(source-line);
+ position: relative; left: -1em; text-align: right; vertical-align: baseline;
+ border: none; display: inline-block;
+ -webkit-touch-callout: none; -webkit-user-select: none;
+ -khtml-user-select: none; -moz-user-select: none;
+ -ms-user-select: none; user-select: none;
+ padding: 0 4px; width: 4em;
+ color: #aaaaaa;
+ }
+pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
-{ }
+ { }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
-code span.al { color: #ff0000; font-weight: bold; }
-code span.an { color: #60a0b0; font-weight: bold; font-style: italic; }
-code span.at { color: #7d9029; }
-code span.bn { color: #40a070; }
-code span.bu { color: #008000; }
-code span.cf { color: #007020; font-weight: bold; }
-code span.ch { color: #4070a0; }
-code span.cn { color: #880000; }
-code span.co { color: #60a0b0; font-style: italic; }
-code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; }
-code span.do { color: #ba2121; font-style: italic; }
-code span.dt { color: #902000; }
-code span.dv { color: #40a070; }
-code span.er { color: #ff0000; font-weight: bold; }
-code span.ex { }
-code span.fl { color: #40a070; }
-code span.fu { color: #06287e; }
-code span.im { color: #008000; font-weight: bold; }
-code span.in { color: #60a0b0; font-weight: bold; font-style: italic; }
-code span.kw { color: #007020; font-weight: bold; }
-code span.op { color: #666666; }
-code span.ot { color: #007020; }
-code span.pp { color: #bc7a00; }
-code span.sc { color: #4070a0; }
-code span.ss { color: #bb6688; }
-code span.st { color: #4070a0; }
-code span.va { color: #19177c; }
-code span.vs { color: #4070a0; }
-code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; }
+code span.al { color: #ff0000; font-weight: bold; } /* Alert */
+code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
+code span.at { color: #7d9029; } /* Attribute */
+code span.bn { color: #40a070; } /* BaseN */
+code span.bu { color: #008000; } /* BuiltIn */
+code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
+code span.ch { color: #4070a0; } /* Char */
+code span.cn { color: #880000; } /* Constant */
+code span.co { color: #60a0b0; font-style: italic; } /* Comment */
+code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
+code span.do { color: #ba2121; font-style: italic; } /* Documentation */
+code span.dt { color: #902000; } /* DataType */
+code span.dv { color: #40a070; } /* DecVal */
+code span.er { color: #ff0000; font-weight: bold; } /* Error */
+code span.ex { } /* Extension */
+code span.fl { color: #40a070; } /* Float */
+code span.fu { color: #06287e; } /* Function */
+code span.im { color: #008000; font-weight: bold; } /* Import */
+code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
+code span.kw { color: #007020; font-weight: bold; } /* Keyword */
+code span.op { color: #666666; } /* Operator */
+code span.ot { color: #007020; } /* Other */
+code span.pp { color: #bc7a00; } /* Preprocessor */
+code span.sc { color: #4070a0; } /* SpecialChar */
+code span.ss { color: #bb6688; } /* SpecialString */
+code span.st { color: #4070a0; } /* String */
+code span.va { color: #19177c; } /* Variable */
+code span.vs { color: #4070a0; } /* VerbatimString */
+code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
+
</style>
<script>
// apply pandoc div.sourceCode style to pre.sourceCode instead
@@ -155,26 +156,25 @@ code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; }
<style type="text/css">
-
+/* for pandoc --citeproc since 2.11 */
div.csl-bib-body { }
div.csl-entry {
-clear: both;
-margin-bottom: 0em;
+ clear: both;
}
.hanging div.csl-entry {
-margin-left:2em;
-text-indent:-2em;
+ margin-left:2em;
+ text-indent:-2em;
}
div.csl-left-margin {
-min-width:2em;
-float:left;
+ min-width:2em;
+ float:left;
}
div.csl-right-inline {
-margin-left:2em;
-padding-left:1em;
+ margin-left:2em;
+ padding-left:1em;
}
div.csl-indent {
-margin-left: 2em;
+ margin-left: 2em;
}
</style>
@@ -372,27 +372,26 @@ code > span.er { color: #a61717; background-color: #e3d2d2; }
<h1 class="title toc-ignore">Short introduction to mkin</h1>
<h4 class="author">Johannes Ranke</h4>
-<h4 class="date">Last change 18 May 2023 (rebuilt 2024-12-19)</h4>
+<h4 class="date">Last change 18 May 2023 (rebuilt 2025-02-16)</h4>
<div id="TOC">
<ul>
-<li><a href="#abstract" id="toc-abstract">Abstract</a></li>
-<li><a href="#background" id="toc-background">Background</a>
+<li><a href="#abstract">Abstract</a></li>
+<li><a href="#background">Background</a>
<ul>
-<li><a href="#derived-software-tools" id="toc-derived-software-tools">Derived software tools</a></li>
+<li><a href="#derived-software-tools">Derived software tools</a></li>
</ul></li>
-<li><a href="#unique-features" id="toc-unique-features">Unique
-features</a></li>
-<li><a href="#internal-parameter-transformations" id="toc-internal-parameter-transformations">Internal parameter
+<li><a href="#unique-features">Unique features</a></li>
+<li><a href="#internal-parameter-transformations">Internal parameter
transformations</a>
<ul>
-<li><a href="#confidence-intervals-based-on-transformed-parameters" id="toc-confidence-intervals-based-on-transformed-parameters">Confidence
+<li><a href="#confidence-intervals-based-on-transformed-parameters">Confidence
intervals based on transformed parameters</a></li>
-<li><a href="#parameter-t-test-based-on-untransformed-parameters" id="toc-parameter-t-test-based-on-untransformed-parameters">Parameter
+<li><a href="#parameter-t-test-based-on-untransformed-parameters">Parameter
t-test based on untransformed parameters</a></li>
</ul></li>
-<li><a href="#references" id="toc-references">References</a></li>
+<li><a href="#references">References</a></li>
</ul>
</div>
@@ -411,36 +410,42 @@ this guidance from within R and calculates some statistical measures for
data series within one or more compartments, for parent and
metabolites.</p>
<details class="chunk-details"><summary class="chunk-summary"><span class="chunk-summary-text">Code</span></summary>
-<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" tabindex="-1"></a><span class="fu">library</span>(<span class="st">&quot;mkin&quot;</span>, <span class="at">quietly =</span> <span class="cn">TRUE</span>)</span>
-<span id="cb1-2"><a href="#cb1-2" tabindex="-1"></a><span class="co"># Define the kinetic model</span></span>
-<span id="cb1-3"><a href="#cb1-3" tabindex="-1"></a>m_SFO_SFO_SFO <span class="ot">&lt;-</span> <span class="fu">mkinmod</span>(<span class="at">parent =</span> <span class="fu">mkinsub</span>(<span class="st">&quot;SFO&quot;</span>, <span class="st">&quot;M1&quot;</span>),</span>
-<span id="cb1-4"><a href="#cb1-4" tabindex="-1"></a> <span class="at">M1 =</span> <span class="fu">mkinsub</span>(<span class="st">&quot;SFO&quot;</span>, <span class="st">&quot;M2&quot;</span>),</span>
-<span id="cb1-5"><a href="#cb1-5" tabindex="-1"></a> <span class="at">M2 =</span> <span class="fu">mkinsub</span>(<span class="st">&quot;SFO&quot;</span>),</span>
-<span id="cb1-6"><a href="#cb1-6" tabindex="-1"></a> <span class="at">use_of_ff =</span> <span class="st">&quot;max&quot;</span>, <span class="at">quiet =</span> <span class="cn">TRUE</span>)</span>
-<span id="cb1-7"><a href="#cb1-7" tabindex="-1"></a></span>
-<span id="cb1-8"><a href="#cb1-8" tabindex="-1"></a></span>
-<span id="cb1-9"><a href="#cb1-9" tabindex="-1"></a><span class="co"># Produce model predictions using some arbitrary parameters</span></span>
-<span id="cb1-10"><a href="#cb1-10" tabindex="-1"></a>sampling_times <span class="ot">=</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">3</span>, <span class="dv">7</span>, <span class="dv">14</span>, <span class="dv">28</span>, <span class="dv">60</span>, <span class="dv">90</span>, <span class="dv">120</span>)</span>
-<span id="cb1-11"><a href="#cb1-11" tabindex="-1"></a>d_SFO_SFO_SFO <span class="ot">&lt;-</span> <span class="fu">mkinpredict</span>(m_SFO_SFO_SFO,</span>
-<span id="cb1-12"><a href="#cb1-12" tabindex="-1"></a> <span class="fu">c</span>(<span class="at">k_parent =</span> <span class="fl">0.03</span>,</span>
-<span id="cb1-13"><a href="#cb1-13" tabindex="-1"></a> <span class="at">f_parent_to_M1 =</span> <span class="fl">0.5</span>, <span class="at">k_M1 =</span> <span class="fu">log</span>(<span class="dv">2</span>)<span class="sc">/</span><span class="dv">100</span>,</span>
-<span id="cb1-14"><a href="#cb1-14" tabindex="-1"></a> <span class="at">f_M1_to_M2 =</span> <span class="fl">0.9</span>, <span class="at">k_M2 =</span> <span class="fu">log</span>(<span class="dv">2</span>)<span class="sc">/</span><span class="dv">50</span>),</span>
-<span id="cb1-15"><a href="#cb1-15" tabindex="-1"></a> <span class="fu">c</span>(<span class="at">parent =</span> <span class="dv">100</span>, <span class="at">M1 =</span> <span class="dv">0</span>, <span class="at">M2 =</span> <span class="dv">0</span>),</span>
-<span id="cb1-16"><a href="#cb1-16" tabindex="-1"></a> sampling_times)</span>
-<span id="cb1-17"><a href="#cb1-17" tabindex="-1"></a></span>
-<span id="cb1-18"><a href="#cb1-18" tabindex="-1"></a><span class="co"># Generate a dataset by adding normally distributed errors with</span></span>
-<span id="cb1-19"><a href="#cb1-19" tabindex="-1"></a><span class="co"># standard deviation 3, for two replicates at each sampling time</span></span>
-<span id="cb1-20"><a href="#cb1-20" tabindex="-1"></a>d_SFO_SFO_SFO_err <span class="ot">&lt;-</span> <span class="fu">add_err</span>(d_SFO_SFO_SFO, <span class="at">reps =</span> <span class="dv">2</span>,</span>
-<span id="cb1-21"><a href="#cb1-21" tabindex="-1"></a> <span class="at">sdfunc =</span> <span class="cf">function</span>(x) <span class="dv">3</span>,</span>
-<span id="cb1-22"><a href="#cb1-22" tabindex="-1"></a> <span class="at">n =</span> <span class="dv">1</span>, <span class="at">seed =</span> <span class="dv">123456789</span> )</span>
-<span id="cb1-23"><a href="#cb1-23" tabindex="-1"></a></span>
-<span id="cb1-24"><a href="#cb1-24" tabindex="-1"></a><span class="co"># Fit the model to the dataset</span></span>
-<span id="cb1-25"><a href="#cb1-25" tabindex="-1"></a>f_SFO_SFO_SFO <span class="ot">&lt;-</span> <span class="fu">mkinfit</span>(m_SFO_SFO_SFO, d_SFO_SFO_SFO_err[[<span class="dv">1</span>]], <span class="at">quiet =</span> <span class="cn">TRUE</span>)</span>
-<span id="cb1-26"><a href="#cb1-26" tabindex="-1"></a></span>
-<span id="cb1-27"><a href="#cb1-27" tabindex="-1"></a><span class="co"># Plot the results separately for parent and metabolites</span></span>
-<span id="cb1-28"><a href="#cb1-28" tabindex="-1"></a><span class="fu">plot_sep</span>(f_SFO_SFO_SFO, <span class="at">lpos =</span> <span class="fu">c</span>(<span class="st">&quot;topright&quot;</span>, <span class="st">&quot;bottomright&quot;</span>, <span class="st">&quot;bottomright&quot;</span>))</span></code></pre></div>
+<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(<span class="st">&quot;mkin&quot;</span>, <span class="at">quietly =</span> <span class="cn">TRUE</span>)</span>
+<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="co"># Define the kinetic model</span></span>
+<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a>m_SFO_SFO_SFO <span class="ot">&lt;-</span> <span class="fu">mkinmod</span>(<span class="at">parent =</span> <span class="fu">mkinsub</span>(<span class="st">&quot;SFO&quot;</span>, <span class="st">&quot;M1&quot;</span>),</span>
+<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a> <span class="at">M1 =</span> <span class="fu">mkinsub</span>(<span class="st">&quot;SFO&quot;</span>, <span class="st">&quot;M2&quot;</span>),</span>
+<span id="cb1-5"><a href="#cb1-5" aria-hidden="true" tabindex="-1"></a> <span class="at">M2 =</span> <span class="fu">mkinsub</span>(<span class="st">&quot;SFO&quot;</span>),</span>
+<span id="cb1-6"><a href="#cb1-6" aria-hidden="true" tabindex="-1"></a> <span class="at">use_of_ff =</span> <span class="st">&quot;max&quot;</span>, <span class="at">quiet =</span> <span class="cn">TRUE</span>)</span>
+<span id="cb1-7"><a href="#cb1-7" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb1-8"><a href="#cb1-8" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb1-9"><a href="#cb1-9" aria-hidden="true" tabindex="-1"></a><span class="co"># Produce model predictions using some arbitrary parameters</span></span>
+<span id="cb1-10"><a href="#cb1-10" aria-hidden="true" tabindex="-1"></a>sampling_times <span class="ot">=</span> <span class="fu">c</span>(<span class="dv">0</span>, <span class="dv">1</span>, <span class="dv">3</span>, <span class="dv">7</span>, <span class="dv">14</span>, <span class="dv">28</span>, <span class="dv">60</span>, <span class="dv">90</span>, <span class="dv">120</span>)</span>
+<span id="cb1-11"><a href="#cb1-11" aria-hidden="true" tabindex="-1"></a>d_SFO_SFO_SFO <span class="ot">&lt;-</span> <span class="fu">mkinpredict</span>(m_SFO_SFO_SFO,</span>
+<span id="cb1-12"><a href="#cb1-12" aria-hidden="true" tabindex="-1"></a> <span class="fu">c</span>(<span class="at">k_parent =</span> <span class="fl">0.03</span>,</span>
+<span id="cb1-13"><a href="#cb1-13" aria-hidden="true" tabindex="-1"></a> <span class="at">f_parent_to_M1 =</span> <span class="fl">0.5</span>, <span class="at">k_M1 =</span> <span class="fu">log</span>(<span class="dv">2</span>)<span class="sc">/</span><span class="dv">100</span>,</span>
+<span id="cb1-14"><a href="#cb1-14" aria-hidden="true" tabindex="-1"></a> <span class="at">f_M1_to_M2 =</span> <span class="fl">0.9</span>, <span class="at">k_M2 =</span> <span class="fu">log</span>(<span class="dv">2</span>)<span class="sc">/</span><span class="dv">50</span>),</span>
+<span id="cb1-15"><a href="#cb1-15" aria-hidden="true" tabindex="-1"></a> <span class="fu">c</span>(<span class="at">parent =</span> <span class="dv">100</span>, <span class="at">M1 =</span> <span class="dv">0</span>, <span class="at">M2 =</span> <span class="dv">0</span>),</span>
+<span id="cb1-16"><a href="#cb1-16" aria-hidden="true" tabindex="-1"></a> sampling_times)</span>
+<span id="cb1-17"><a href="#cb1-17" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb1-18"><a href="#cb1-18" aria-hidden="true" tabindex="-1"></a><span class="co"># Generate a dataset by adding normally distributed errors with</span></span>
+<span id="cb1-19"><a href="#cb1-19" aria-hidden="true" tabindex="-1"></a><span class="co"># standard deviation 3, for two replicates at each sampling time</span></span>
+<span id="cb1-20"><a href="#cb1-20" aria-hidden="true" tabindex="-1"></a>d_SFO_SFO_SFO_err <span class="ot">&lt;-</span> <span class="fu">add_err</span>(d_SFO_SFO_SFO, <span class="at">reps =</span> <span class="dv">2</span>,</span>
+<span id="cb1-21"><a href="#cb1-21" aria-hidden="true" tabindex="-1"></a> <span class="at">sdfunc =</span> <span class="cf">function</span>(x) <span class="dv">3</span>,</span>
+<span id="cb1-22"><a href="#cb1-22" aria-hidden="true" tabindex="-1"></a> <span class="at">n =</span> <span class="dv">1</span>, <span class="at">seed =</span> <span class="dv">123456789</span> )</span>
+<span id="cb1-23"><a href="#cb1-23" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb1-24"><a href="#cb1-24" aria-hidden="true" tabindex="-1"></a><span class="co"># Fit the model to the dataset</span></span>
+<span id="cb1-25"><a href="#cb1-25" aria-hidden="true" tabindex="-1"></a>f_SFO_SFO_SFO <span class="ot">&lt;-</span> <span class="fu">mkinfit</span>(m_SFO_SFO_SFO, d_SFO_SFO_SFO_err[[<span class="dv">1</span>]], <span class="at">quiet =</span> <span class="cn">TRUE</span>)</span>
+<span id="cb1-26"><a href="#cb1-26" aria-hidden="true" tabindex="-1"></a></span>
+<span id="cb1-27"><a href="#cb1-27" aria-hidden="true" tabindex="-1"></a><span class="co"># Plot the results separately for parent and metabolites</span></span>
+<span id="cb1-28"><a href="#cb1-28" aria-hidden="true" tabindex="-1"></a><span class="fu">plot_sep</span>(f_SFO_SFO_SFO, <span class="at">lpos =</span> <span class="fu">c</span>(<span class="st">&quot;topright&quot;</span>, <span class="st">&quot;bottomright&quot;</span>, <span class="st">&quot;bottomright&quot;</span>))</span></code></pre></div>
</details>
-<p><img role="img" src="" /><!-- --></p>
+<pre><code>## Warning: In subset.data.frame(fit$fixed, type = &quot;state&quot;) :
+## extra argument &#39;type&#39; will be disregarded
+## Warning: In subset.data.frame(fit$fixed, type = &quot;state&quot;) :
+## extra argument &#39;type&#39; will be disregarded
+## Warning: In subset.data.frame(fit$fixed, type = &quot;state&quot;) :
+## extra argument &#39;type&#39; will be disregarded</code></pre>
+<p><img src="" /><!-- --></p>
</div>
<div id="background" class="section level1">
<h1>Background</h1>
@@ -618,7 +623,7 @@ parameter estimators.</p>
<div id="references" class="section level1">
<h1>References</h1>
<!-- vim: set foldmethod=syntax: -->
-<div id="refs" class="references csl-bib-body hanging-indent" entry-spacing="0">
+<div id="refs" class="references csl-bib-body hanging-indent">
<div id="ref-bates1988" class="csl-entry">
Bates, D., and D. Watts. 1988. <em>Nonlinear Regression and Its
Applications</em>. Wiley-Interscience.

Contact - Imprint