aboutsummaryrefslogtreecommitdiff
path: root/R/plot.mixed.mmkin.R
blob: d6c3d0de2c4d940d8bc31f71f3182379a12bd5ff (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
utils::globalVariables("ds")

#' Plot predictions from a fitted nonlinear mixed model obtained via an mmkin row object
#'
#' @param x An object of class [mixed.mmkin], [saem.mmkin] or [nlme.mmkin]
#' @param i A numeric index to select datasets for which to plot the individual predictions,
#' in case plots get too large
#' @inheritParams plot.mkinfit
#' @param standardized Should the residuals be standardized? Only takes effect if
#' `resplot = "time"`.
#' @param pop_curves Per default, one population curve is drawn in case
#' population parameters are fitted by the model, e.g. for saem objects.
#' In case there is a covariate model, the behaviour depends on the value
#' of 'covariates'
#' @param covariates Data frame with covariate values for all variables in
#' any covariate models in the object. If given, it overrides 'covariate_quantiles'.
#' Each line in the data frame will result in a line drawn for the population.
#' Rownames are used in the legend to label the lines.
#' @param covariate_quantiles This argument only has an effect if the fitted
#' object has covariate models. If so, the default is to show three population
#' curves, for the 5th percentile, the 50th percentile and the 95th percentile
#' of the covariate values used for fitting the model.
#' @note Covariate models are currently only supported for saem.mmkin objects.
#' @param pred_over Named list of alternative predictions as obtained
#' from [mkinpredict] with a compatible [mkinmod].
#' @param test_log_parms Passed to [mean_degparms] in the case of an
#' [mixed.mmkin] object
#' @param conf.level Passed to [mean_degparms] in the case of an
#' [mixed.mmkin] object
#' @param default_log_parms Passed to [mean_degparms] in the case of an
#' [mixed.mmkin] object
#' @param rel.height.legend The relative height of the legend shown on top
#' @param rel.height.bottom The relative height of the bottom plot row
#' @param ymax Vector of maximum y axis values
#' @param ncol.legend Number of columns to use in the legend
#' @param nrow.legend Number of rows to use in the legend
#' @param resplot Should the residuals plotted against time or against
#' predicted values?
#' @param col_ds Colors used for plotting the observed data and the
#' corresponding model prediction lines for the different datasets.
#' @param pch_ds Symbols to be used for plotting the data.
#' @param lty_ds Line types to be used for the model predictions.
#' @importFrom stats coefficients
#' @return The function is called for its side effect.
#' @author Johannes Ranke
#' @examples
#' ds <- lapply(experimental_data_for_UBA_2019[6:10],
#'  function(x) x$data[c("name", "time", "value")])
#' names(ds) <- paste0("ds ", 6:10)
#' dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"),
#'   A1 = mkinsub("SFO"), quiet = TRUE)
#' \dontrun{
#' f <- mmkin(list("DFOP-SFO" = dfop_sfo), ds, quiet = TRUE)
#' plot(f[, 3:4], standardized = TRUE)
#'
#' # For this fit we need to increase pnlsMaxiter, and we increase the
#' # tolerance in order to speed up the fit for this example evaluation
#' # It still takes 20 seconds to run
#' f_nlme <- nlme(f, control = list(pnlsMaxIter = 120, tolerance = 1e-3))
#' plot(f_nlme)
#'
#' f_saem <- saem(f, transformations = "saemix")
#' plot(f_saem)
#'
#' f_obs <- mmkin(list("DFOP-SFO" = dfop_sfo), ds, quiet = TRUE, error_model = "obs")
#' f_nlmix <- nlmix(f_obs)
#' plot(f_nlmix)
#'
#' # We can overlay the two variants if we generate predictions
#' pred_nlme <- mkinpredict(dfop_sfo,
#'   f_nlme$bparms.optim[-1],
#'   c(parent = f_nlme$bparms.optim[[1]], A1 = 0),
#'   seq(0, 180, by = 0.2))
#' plot(f_saem, pred_over = list(nlme = pred_nlme))
#' }
#' @export
plot.mixed.mmkin <- function(x,
  i = 1:ncol(x$mmkin),
  obs_vars = names(x$mkinmod$map),
  standardized = TRUE,
  covariates = NULL,
  covariate_quantiles = c(0.5, 0.05, 0.95),
  xlab = "Time",
  xlim = range(x$data$time),
  resplot = c("predicted", "time"),
  pop_curves = "auto",
  pred_over = NULL,
  test_log_parms = FALSE,
  conf.level = 0.6,
  default_log_parms = NA,
  ymax = "auto", maxabs = "auto",
  ncol.legend = ifelse(length(i) <= 3, length(i) + 1, ifelse(length(i) <= 8, 3, 4)),
  nrow.legend = ceiling((length(i) + 1) / ncol.legend),
  rel.height.legend = 0.02 + 0.07 * nrow.legend,
  rel.height.bottom = 1.1,
  pch_ds = 1:length(i),
  col_ds = pch_ds + 1,
  lty_ds = col_ds,
  frame = TRUE, ...
)
{
  # Prepare parameters and data
  fit_1 <- x$mmkin[[1]]
  ds_names <- colnames(x$mmkin)

  backtransform = TRUE

  if (identical(class(x), "mixed.mmkin")) {
    if (identical(pop_curves, "auto")) {
      pop_curves <- FALSE
    } else {
      pop_curves <- TRUE
    }
    if (pop_curves) {
      degparms_pop <- mean_degparms(x$mmkin, test_log_parms = test_log_parms,
        conf.level = conf.level, default_log_parms = default_log_parms)
    }

    degparms_tmp <- parms(x$mmkin, transformed = TRUE)
    degparms_i <- as.data.frame(t(degparms_tmp[setdiff(rownames(degparms_tmp), names(fit_1$errparms)), ]))
    residual_type = ifelse(standardized, "standardized", "residual")
    residuals <- x$data[[residual_type]]
  }

  if (inherits(x, "nlme.mmkin")) {
    if (identical(pop_curves, "auto")) {
      pop_curves <- TRUE
    } else {
      pop_curves <- FALSE
    }
    degparms_i <- coefficients(x)
    degparms_pop <- nlme::fixef(x)
    residuals <- residuals(x,
      type = ifelse(standardized, "pearson", "response"))
  }

  if (inherits(x, "saem.mmkin")) {
    if (x$transformations == "saemix") backtransform = FALSE
    psi <- saemix::psi(x$so)
    rownames(psi) <- x$saemix_ds_order
    degparms_i <- psi[ds_names, ]
    degparms_i_names <- colnames(degparms_i)
    residual_type = ifelse(standardized, "standardized", "residual")
    residuals <- x$data[[residual_type]]

    if (identical(pop_curves, "auto")) {
      if (length(x$covariate_models) == 0) {
        degparms_pop <- x$so@results@fixed.effects
        names(degparms_pop) <- degparms_i_names
        pop_curves <- TRUE
      } else {
        if (is.null(covariates)) {
          covariates = as.data.frame(
            apply(x$covariates, 2, quantile,
             covariate_quantiles, simplify = FALSE))
          rownames(covariates) <- paste(
            ifelse(length(x$covariate_models) == 1,
              "Covariate", "Covariates"),
              rownames(covariates))
        }
        degparms_pop <- parms(x, covariates = covariates)
        pop_curves <- TRUE
      }
    } else {
      pop_curves <- FALSE
    }
  }

  if (pop_curves) {
    # Make sure degparms_pop is a matrix, columns corresponding to population curve(s)
    if (is.null(dim(degparms_pop))) {
      degparms_pop <- matrix(degparms_pop, ncol = 1,
        dimnames = list(names(degparms_pop), "Population"))
    }
  }

  degparms_fixed <- fit_1$fixed$value
  names(degparms_fixed) <- rownames(fit_1$fixed)
  degparms_all <- cbind(as.matrix(degparms_i),
    matrix(rep(degparms_fixed, nrow(degparms_i)),
      ncol = length(degparms_fixed),
      nrow = nrow(degparms_i), byrow = TRUE))
  degparms_all_names <- c(names(degparms_i), names(degparms_fixed))
  colnames(degparms_all) <- degparms_all_names

  odeini_names <- grep("_0$", degparms_all_names, value = TRUE)
  odeparms_names <- setdiff(degparms_all_names, odeini_names)

  observed <- cbind(x$data[c("ds", "name", "time", "value")],
    residual = residuals)

  solution_type = fit_1$solution_type

  outtimes <- sort(unique(c(x$data$time,
    seq(xlim[1], xlim[2], length.out = 50))))

  pred_list <- lapply(i, function(ds_i)   {
    odeparms_trans <- degparms_all[ds_i, odeparms_names]
    names(odeparms_trans) <- odeparms_names # needed if only one odeparm
    if (backtransform) {
      odeparms <- backtransform_odeparms(odeparms_trans,
        x$mkinmod,
        transform_rates = fit_1$transform_rates,
        transform_fractions = fit_1$transform_fractions)
    } else {
      odeparms <- odeparms_trans
    }

    odeini <- degparms_all[ds_i, odeini_names]
    names(odeini) <- gsub("_0", "", odeini_names)

    out <- mkinpredict(x$mkinmod, odeparms, odeini,
      outtimes, solution_type = solution_type,
      atol = fit_1$atol, rtol = fit_1$rtol)
  })
  names(pred_list) <- ds_names[i]
  pred_ds <- vctrs::vec_rbind(!!!pred_list, .names_to = "ds")

  if (pop_curves) {
    pred_list_pop <- lapply(1:ncol(degparms_pop), function(cov_i)   {
      degparms_all_pop_i <- c(degparms_pop[, cov_i], degparms_fixed)
      odeparms_pop_trans_i <- degparms_all_pop_i[odeparms_names]
      names(odeparms_pop_trans_i) <- odeparms_names # needed if only one odeparm
      if (backtransform) {
        odeparms_pop_i <- backtransform_odeparms(odeparms_pop_trans_i,
          x$mkinmod,
          transform_rates = fit_1$transform_rates,
          transform_fractions = fit_1$transform_fractions)
      } else {
        odeparms_pop_i <- odeparms_pop_trans_i
      }

      odeini <- degparms_all_pop_i[odeini_names]
      names(odeini) <- gsub("_0", "", odeini_names)

      out <- mkinpredict(x$mkinmod, odeparms_pop_i, odeini,
        outtimes, solution_type = solution_type,
        atol = fit_1$atol, rtol = fit_1$rtol)
    })
    names(pred_list_pop) <- colnames(degparms_pop)

  } else {
    pred_list_pop <- NULL
  }

  # Start of graphical section
  oldpar <- par(no.readonly = TRUE)
  on.exit(par(oldpar, no.readonly = TRUE))

  n_plot_rows = length(obs_vars)
  n_plots = n_plot_rows * 2

  # Set relative plot heights, so the first plot row is the norm
  rel.heights <- if (n_plot_rows > 1) {
    c(rel.height.legend, c(rep(1, n_plot_rows - 1), rel.height.bottom))
  } else {
    c(rel.height.legend, 1)
  }

  layout_matrix = matrix(c(1, 1, 2:(n_plots + 1)),
    n_plot_rows + 1, 2, byrow = TRUE)
  layout(layout_matrix, heights = rel.heights)

  par(mar = c(0.1, 2.1, 0.1, 2.1))

  # Empty plot with legend
  if (!is.null(pred_over)) lty_over <- seq(2, length.out = length(pred_over))
  else lty_over <- NULL
  if (pop_curves) {
    if (is.null(covariates)) {
      lty_pop <- 1
      names(lty_pop) <- "Population"
    } else {
      lty_pop <- 1:nrow(covariates)
      names(lty_pop) <- rownames(covariates)
    }
  } else {
    lty_pop <- NULL
  }
  n_pop_over <- length(lty_pop) + length(lty_over)

  plot(0, type = "n", axes = FALSE, ann = FALSE)
  legend("center", bty = "n", ncol = ncol.legend,
    legend = c(names(lty_pop), names(pred_over), ds_names[i]),
    lty = c(lty_pop, lty_over, lty_ds),
    lwd = c(rep(2, n_pop_over), rep(1, length(i))),
    col = c(rep(1, n_pop_over), col_ds),
    pch = c(rep(NA, n_pop_over), pch_ds))

  resplot <- match.arg(resplot)

  # Loop plot rows
  for (plot_row in 1:n_plot_rows) {

    obs_var <- obs_vars[plot_row]
    observed_row <- subset(observed, name == obs_var)

    # Set ylim to sensible default, or use ymax
    if (identical(ymax, "auto")) {
      ylim_row = c(0,
        max(c(observed_row$value, pred_ds[[obs_var]]), na.rm = TRUE))
    } else {
      ylim_row = c(0, ymax[plot_row])
    }

    # Margins for bottom row of plots when we have more than one row
    # This is the only row that needs to show the x axis legend
    if (plot_row == n_plot_rows) {
      par(mar = c(5.1, 4.1, 1.1, 2.1))
    } else {
      par(mar = c(3.0, 4.1, 1.1, 2.1))
    }

    plot(0, type = "n",
      xlim = xlim, ylim = ylim_row,
      xlab = xlab, ylab = paste("Residues", obs_var), frame = frame)

    if (!is.null(pred_over)) {
      for (i_over in seq_along(pred_over)) {
        pred_frame <- as.data.frame(pred_over[[i_over]])
        lines(pred_frame$time, pred_frame[[obs_var]],
          lwd = 2, lty = lty_over[i_over])
      }
    }

    for (ds_i in seq_along(i)) {
      points(subset(observed_row, ds == ds_names[ds_i], c("time", "value")),
        col = col_ds[ds_i], pch = pch_ds[ds_i])
      lines(subset(pred_ds, ds == ds_names[ds_i], c("time", obs_var)),
        col = col_ds[ds_i], lty = lty_ds[ds_i])
    }

    if (pop_curves) {
      for (cov_i in seq_along(pred_list_pop)) {
        cov_name <- names(pred_list_pop)[cov_i]
        lines(
          pred_list_pop[[cov_i]][, "time"],
          pred_list_pop[[cov_i]][, obs_var],
          type = "l", lwd = 2, lty = lty_pop[cov_i])
      }
    }

    if (identical(maxabs, "auto")) {
      maxabs = max(abs(observed_row$residual), na.rm = TRUE)
    }

    if (identical(resplot, "time")) {
      plot(0, type = "n", xlim = xlim, xlab = "Time",
        ylim = c(-1.2 * maxabs, 1.2 * maxabs),
        ylab = if (standardized) "Standardized residual" else "Residual",
        frame = frame)

      abline(h = 0, lty = 2)

      for (ds_i in seq_along(i)) {
        points(subset(observed_row, ds == ds_names[ds_i], c("time", "residual")),
          col = col_ds[ds_i], pch = pch_ds[ds_i])
      }
    }

    if (identical(resplot, "predicted")) {
      plot(0, type = "n",
        xlim = c(0, max(pred_ds[[obs_var]])),
        xlab = "Predicted",
        ylim = c(-1.2 * maxabs, 1.2 * maxabs),
        ylab = if (standardized) "Standardized residual" else "Residual",
        frame = frame)

      abline(h = 0, lty = 2)

      for (ds_i in seq_along(i)) {
        observed_row_ds <- merge(
          subset(observed_row, ds == ds_names[ds_i], c("time", "residual")),
          subset(pred_ds, ds == ds_names[ds_i], c("time", obs_var)))
        points(observed_row_ds[c(3, 2)],
          col = col_ds[ds_i], pch = pch_ds[ds_i])
      }
    }
  }
}

Contact - Imprint