1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
|
#' Summary method for class "nlme.mmkin"
#'
#' Lists model equations, initial parameter values, optimised parameters
#' for fixed effects (population), random effects (deviations from the
#' population mean) and residual error model, as well as the resulting
#' endpoints such as formation fractions and DT50 values. Optionally
#' (default is FALSE), the data are listed in full.
#'
#' @param object an object of class [nlme.mmkin]
#' @param x an object of class [summary.nlme.mmkin]
#' @param data logical, indicating whether the full data should be included in
#' the summary.
#' @param verbose Should the summary be verbose?
#' @param distimes logical, indicating whether DT50 and DT90 values should be
#' included.
#' @param alpha error level for confidence interval estimation from the t
#' distribution
#' @param digits Number of digits to use for printing
#' @param \dots optional arguments passed to methods like \code{print}.
#' @return The summary function returns a list based on the [nlme] object
#' obtained in the fit, with at least the following additional components
#' \item{nlmeversion, mkinversion, Rversion}{The nlme, mkin and R versions used}
#' \item{date.fit, date.summary}{The dates where the fit and the summary were
#' produced}
#' \item{diffs}{The differential equations used in the degradation model}
#' \item{use_of_ff}{Was maximum or minimum use made of formation fractions}
#' \item{data}{The data}
#' \item{confint_trans}{Transformed parameters as used in the optimisation, with confidence intervals}
#' \item{confint_back}{Backtransformed parameters, with confidence intervals if available}
#' \item{ff}{The estimated formation fractions derived from the fitted
#' model.}
#' \item{distimes}{The DT50 and DT90 values for each observed variable.}
#' \item{SFORB}{If applicable, eigenvalues of SFORB components of the model.}
#' The print method is called for its side effect, i.e. printing the summary.
#' @importFrom stats predict
#' @author Johannes Ranke for the mkin specific parts
#' José Pinheiro and Douglas Bates for the components inherited from nlme
#' @examples
#'
#' # Generate five datasets following SFO kinetics
#' sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
#' dt50_sfo_in_pop <- 50
#' k_in_pop <- log(2) / dt50_sfo_in_pop
#' set.seed(1234)
#' k_in <- rlnorm(5, log(k_in_pop), 0.5)
#' SFO <- mkinmod(parent = mkinsub("SFO"))
#'
#' pred_sfo <- function(k) {
#' mkinpredict(SFO,
#' c(k_parent = k),
#' c(parent = 100),
#' sampling_times)
#' }
#'
#' ds_sfo_mean <- lapply(k_in, pred_sfo)
#' names(ds_sfo_mean) <- paste("ds", 1:5)
#'
#' set.seed(12345)
#' ds_sfo_syn <- lapply(ds_sfo_mean, function(ds) {
#' add_err(ds,
#' sdfunc = function(value) sqrt(1^2 + value^2 * 0.07^2),
#' n = 1)[[1]]
#' })
#'
#' \dontrun{
#' # Evaluate using mmkin and nlme
#' library(nlme)
#' f_mmkin <- mmkin("SFO", ds_sfo_syn, quiet = TRUE, error_model = "tc", cores = 1)
#' f_nlme <- nlme(f_mmkin)
#' summary(f_nlme, data = TRUE)
#' }
#'
#' @export
summary.nlme.mmkin <- function(object, data = FALSE, verbose = FALSE, distimes = TRUE, alpha = 0.05, ...) {
mod_vars <- names(object$mkinmod$diffs)
confint_trans <- intervals(object, which = "fixed", level = 1 - alpha)$fixed
attr(confint_trans, "label") <- NULL
pnames <- rownames(confint_trans)
bp <- backtransform_odeparms(confint_trans[, "est."], object$mkinmod,
object$transform_rates, object$transform_fractions)
bpnames <- names(bp)
# variance-covariance estimates for fixed effects (from summary.lme)
fixed <- fixef(object)
stdFixed <- sqrt(diag(as.matrix(object$varFix)))
object$corFixed <- array(
t(object$varFix/stdFixed)/stdFixed,
dim(object$varFix),
list(names(fixed), names(fixed)))
# Transform boundaries of CI for one parameter at a time,
# with the exception of sets of formation fractions (single fractions are OK).
f_names_skip <- character(0)
for (box in mod_vars) { # Figure out sets of fractions to skip
f_names <- grep(paste("^f", box, sep = "_"), pnames, value = TRUE)
n_paths <- length(f_names)
if (n_paths > 1) f_names_skip <- c(f_names_skip, f_names)
}
confint_back <- matrix(NA, nrow = length(bp), ncol = 3,
dimnames = list(bpnames, colnames(confint_trans)))
confint_back[, "est."] <- bp
for (pname in pnames) {
if (!pname %in% f_names_skip) {
par.lower <- confint_trans[pname, "lower"]
par.upper <- confint_trans[pname, "upper"]
names(par.lower) <- names(par.upper) <- pname
bpl <- backtransform_odeparms(par.lower, object$mkinmod,
object$transform_rates,
object$transform_fractions)
bpu <- backtransform_odeparms(par.upper, object$mkinmod,
object$transform_rates,
object$transform_fractions)
confint_back[names(bpl), "lower"] <- bpl
confint_back[names(bpu), "upper"] <- bpu
}
}
object$confint_trans <- confint_trans
object$confint_back <- confint_back
object$date.summary = date()
object$use_of_ff = object$mkinmod$use_of_ff
object$error_model_algorithm = object$mmkin[[1]]$error_model_algorithm
err_mod = object$mmkin[[1]]$err_mod
object$diffs <- object$mkinmod$diffs
object$print_data <- data
object$data[["observed"]] <- object$data[["value"]]
object$data[["value"]] <- NULL
object$data[["predicted"]] <- predict(object)
object$data[["residual"]] <- residuals(object, type = "response")
if (is.null(object$modelStruct$varStruct)) {
object$data[["std"]] <- object$sigma
} else {
object$data[["std"]] <- 1/attr(object$modelStruct$varStruct, "weights")
}
object$data[["standardized"]] <- residuals(object, type = "pearson")
object$verbose <- verbose
object$fixed <- object$mmkin[[1]]$fixed
object$AIC = AIC(object)
object$BIC = BIC(object)
object$logLik = logLik(object)
ep <- endpoints(object)
if (length(ep$ff) != 0)
object$ff <- ep$ff
if (distimes) object$distimes <- ep$distimes
if (length(ep$SFORB) != 0) object$SFORB <- ep$SFORB
class(object) <- c("summary.nlme.mmkin", "nlme.mmkin", "nlme", "lme")
return(object)
}
#' @rdname summary.nlme.mmkin
#' @export
print.summary.nlme.mmkin <- function(x, digits = max(3, getOption("digits") - 3), verbose = x$verbose, ...) {
cat("nlme version used for fitting: ", x$nlmeversion, "\n")
cat("mkin version used for pre-fitting: ", x$mkinversion, "\n")
cat("R version used for fitting: ", x$Rversion, "\n")
cat("Date of fit: ", x$date.fit, "\n")
cat("Date of summary:", x$date.summary, "\n")
cat("\nEquations:\n")
nice_diffs <- gsub("^(d.*) =", "\\1/dt =", x[["diffs"]])
writeLines(strwrap(nice_diffs, exdent = 11))
cat("\nData:\n")
cat(nrow(x$data), "observations of",
length(unique(x$data$name)), "variable(s) grouped in",
length(unique(x$data$ds)), "datasets\n")
cat("\nModel predictions using solution type", x$solution_type, "\n")
cat("\nFitted in", x$time[["elapsed"]], "s using", x$numIter, "iterations\n")
cat("\nVariance model: ")
cat(switch(x$err_mod,
const = "Constant variance",
obs = "Variance unique to each observed variable",
tc = "Two-component variance function"), "\n")
cat("\nMean of starting values for individual parameters:\n")
print(x$mean_dp_start, digits = digits)
cat("\nFixed degradation parameter values:\n")
if(length(x$fixed$value) == 0) cat("None\n")
else print(x$fixed, digits = digits)
cat("\nResults:\n\n")
print(data.frame(AIC = x$AIC, BIC = x$BIC, logLik = x$logLik,
row.names = " "), digits = digits, ...)
cat("\nOptimised, transformed parameters with symmetric confidence intervals:\n")
print(x$confint_trans, digits = digits, ...)
if (nrow(x$confint_trans) > 1) {
corr <- x$corFixed
class(corr) <- "correlation"
print(corr, title = "\nCorrelation:", rdig = digits, ...)
}
cat("\n") # Random effects
print(summary(x$modelStruct), sigma = x$sigma,
reEstimates = x$coef$random, digits = digits, verbose = verbose, ...)
cat("\nBacktransformed parameters with asymmetric confidence intervals:\n")
print(x$confint_back, digits = digits, ...)
printSFORB <- !is.null(x$SFORB)
if(printSFORB){
cat("\nEstimated Eigenvalues of SFORB model(s):\n")
print(x$SFORB, digits = digits,...)
}
printff <- !is.null(x$ff)
if(printff){
cat("\nResulting formation fractions:\n")
print(data.frame(ff = x$ff), digits = digits, ...)
}
printdistimes <- !is.null(x$distimes)
if(printdistimes){
cat("\nEstimated disappearance times:\n")
print(x$distimes, digits = digits, ...)
}
if (x$print_data){
cat("\nData:\n")
print(format(x$data, digits = digits, ...), row.names = FALSE)
}
invisible(x)
}
|