1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
|
<!DOCTYPE html>
<!-- Generated by pkgdown: do not edit by hand --><html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<meta name="description" content="mkin">
<title>Example evaluation of FOCUS Laboratory Data L1 to L3 • mkin</title>
<script src="../deps/jquery-3.6.0/jquery-3.6.0.min.js"></script><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<link href="../deps/bootstrap-5.2.2/bootstrap.min.css" rel="stylesheet">
<script src="../deps/bootstrap-5.2.2/bootstrap.bundle.min.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous">
<!-- bootstrap-toc --><script src="https://cdn.jsdelivr.net/gh/afeld/bootstrap-toc@v1.0.1/dist/bootstrap-toc.min.js" integrity="sha256-4veVQbu7//Lk5TSmc7YV48MxtMy98e26cf5MrgZYnwo=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- search --><script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/6.4.6/fuse.js" integrity="sha512-zv6Ywkjyktsohkbp9bb45V6tEMoWhzFzXis+LrMehmJZZSys19Yxf1dopHx7WzIKxr5tK2dVcYmaCk2uqdjF4A==" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/autocomplete.js/0.38.0/autocomplete.jquery.min.js" integrity="sha512-GU9ayf+66Xx2TmpxqJpliWbT5PiGYxpaG8rfnBEk1LL8l1KGkRShhngwdXK1UgqhAzWpZHSiYPc09/NwDQIGyg==" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/mark.min.js" integrity="sha512-5CYOlHXGh6QpOFA/TeTylKLWfB3ftPsde7AnmhuitiTX4K5SqCLBeKro6sPS8ilsz1Q4NRx3v8Ko2IBiszzdww==" crossorigin="anonymous"></script><!-- pkgdown --><script src="../pkgdown.js"></script><meta property="og:title" content="Example evaluation of FOCUS Laboratory Data L1 to L3">
<meta property="og:description" content="mkin">
<!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]-->
</head>
<body>
<a href="#main" class="visually-hidden-focusable">Skip to contents</a>
<nav class="navbar fixed-top navbar-default navbar-expand-lg bg-light"><div class="container">
<a class="navbar-brand me-2" href="../index.html">mkin</a>
<small class="nav-text text-default me-auto" data-bs-toggle="tooltip" data-bs-placement="bottom" title="Released version">1.2.6</small>
<button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#navbar" aria-controls="navbar" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar" class="collapse navbar-collapse ms-3">
<ul class="navbar-nav me-auto">
<li class="nav-item">
<a class="nav-link" href="../reference/index.html">Reference</a>
</li>
<li class="active nav-item dropdown">
<a href="#" class="nav-link dropdown-toggle" data-bs-toggle="dropdown" role="button" aria-expanded="false" aria-haspopup="true" id="dropdown-articles">Articles</a>
<div class="dropdown-menu" aria-labelledby="dropdown-articles">
<a class="dropdown-item" href="../articles/mkin.html">Introduction to mkin</a>
<div class="dropdown-divider"></div>
<h6 class="dropdown-header" data-toc-skip>Example evaluations with (generalised) nonlinear least squares</h6>
<a class="dropdown-item" href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>
<a class="dropdown-item" href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>
<a class="dropdown-item" href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a>
<div class="dropdown-divider"></div>
<h6 class="dropdown-header" data-toc-skip>Example evaluations with hierarchical models (nonlinear mixed-effects models)</h6>
<a class="dropdown-item" href="../articles/prebuilt/2022_dmta_parent.html">Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P</a>
<a class="dropdown-item" href="../articles/prebuilt/2022_dmta_pathway.html">Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P</a>
<a class="dropdown-item" href="../articles/prebuilt/2023_mesotrione_parent.html">Testing covariate modelling in hierarchical parent degradation kinetics with residue data on mesotrione</a>
<a class="dropdown-item" href="../articles/prebuilt/2022_cyan_pathway.html">Testing hierarchical pathway kinetics with residue data on cyantraniliprole</a>
<a class="dropdown-item" href="../articles/web_only/dimethenamid_2018.html">Comparison of saemix and nlme evaluations of dimethenamid data from 2018</a>
<a class="dropdown-item" href="../articles/web_only/multistart.html">Short demo of the multistart method</a>
<div class="dropdown-divider"></div>
<h6 class="dropdown-header" data-toc-skip>Performance</h6>
<a class="dropdown-item" href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>
<a class="dropdown-item" href="../articles/web_only/benchmarks.html">Benchmark timings for mkin</a>
<a class="dropdown-item" href="../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a>
<div class="dropdown-divider"></div>
<h6 class="dropdown-header" data-toc-skip>Miscellaneous</h6>
<a class="dropdown-item" href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a>
<a class="dropdown-item" href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a>
</div>
</li>
<li class="nav-item">
<a class="nav-link" href="../news/index.html">News</a>
</li>
</ul>
<form class="form-inline my-2 my-lg-0" role="search">
<input type="search" class="form-control me-sm-2" aria-label="Toggle navigation" name="search-input" data-search-index="../search.json" id="search-input" placeholder="Search for" autocomplete="off">
</form>
<ul class="navbar-nav">
<li class="nav-item">
<a class="external-link nav-link" href="https://github.com/jranke/mkin/" aria-label="github">
<span class="fab fa fab fa-github fa-lg"></span>
</a>
</li>
</ul>
</div>
</div>
</nav><div class="container template-article">
<div class="row">
<main id="main" class="col-md-9"><div class="page-header">
<img src="" class="logo" alt=""><h1>Example evaluation of FOCUS Laboratory Data L1 to L3</h1>
<h4 data-toc-skip class="author">Johannes
Ranke</h4>
<h4 data-toc-skip class="date">Last change 18 May 2023
(rebuilt 2023-11-16)</h4>
<small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/vignettes/FOCUS_L.rmd" class="external-link"><code>vignettes/FOCUS_L.rmd</code></a></small>
<div class="d-none name"><code>FOCUS_L.rmd</code></div>
</div>
<div class="section level2">
<h2 id="laboratory-data-l1">Laboratory Data L1<a class="anchor" aria-label="anchor" href="#laboratory-data-l1"></a>
</h2>
<p>The following code defines example dataset L1 from the FOCUS kinetics
report, p. 284:</p>
<div class="sourceCode" id="cb1"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="kw"><a href="https://rdrr.io/r/base/library.html" class="external-link">library</a></span><span class="op">(</span><span class="st"><a href="https://pkgdown.jrwb.de/mkin/">"mkin"</a></span>, quietly <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>
<span><span class="va">FOCUS_2006_L1</span> <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html" class="external-link">data.frame</a></span><span class="op">(</span></span>
<span> t <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/rep.html" class="external-link">rep</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0</span>, <span class="fl">1</span>, <span class="fl">2</span>, <span class="fl">3</span>, <span class="fl">5</span>, <span class="fl">7</span>, <span class="fl">14</span>, <span class="fl">21</span>, <span class="fl">30</span><span class="op">)</span>, each <span class="op">=</span> <span class="fl">2</span><span class="op">)</span>,</span>
<span> parent <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">88.3</span>, <span class="fl">91.4</span>, <span class="fl">85.6</span>, <span class="fl">84.5</span>, <span class="fl">78.9</span>, <span class="fl">77.6</span>,</span>
<span> <span class="fl">72.0</span>, <span class="fl">71.9</span>, <span class="fl">50.3</span>, <span class="fl">59.4</span>, <span class="fl">47.0</span>, <span class="fl">45.1</span>,</span>
<span> <span class="fl">27.7</span>, <span class="fl">27.3</span>, <span class="fl">10.0</span>, <span class="fl">10.4</span>, <span class="fl">2.9</span>, <span class="fl">4.0</span><span class="op">)</span><span class="op">)</span></span>
<span><span class="va">FOCUS_2006_L1_mkin</span> <span class="op"><-</span> <span class="fu"><a href="../reference/mkin_wide_to_long.html">mkin_wide_to_long</a></span><span class="op">(</span><span class="va">FOCUS_2006_L1</span><span class="op">)</span></span></code></pre></div>
<p>Here we use the assumptions of simple first order (SFO), the case of
declining rate constant over time (FOMC) and the case of two different
phases of the kinetics (DFOP). For a more detailed discussion of the
models, please see the FOCUS kinetics report.</p>
<p>Since mkin version 0.9-32 (July 2014), we can use shorthand notation
like <code>"SFO"</code> for parent only degradation models. The
following two lines fit the model and produce the summary report of the
model fit. This covers the numerical analysis given in the FOCUS
report.</p>
<div class="sourceCode" id="cb2"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">m.L1.SFO</span> <span class="op"><-</span> <span class="fu"><a href="../reference/mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="va">FOCUS_2006_L1_mkin</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>
<span><span class="fu"><a href="https://rdrr.io/pkg/saemix/man/summary-methods.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">m.L1.SFO</span><span class="op">)</span></span></code></pre></div>
<pre><code><span><span class="co">## mkin version used for fitting: 1.2.6 </span></span>
<span><span class="co">## R version used for fitting: 4.3.2 </span></span>
<span><span class="co">## Date of fit: Thu Nov 16 04:20:13 2023 </span></span>
<span><span class="co">## Date of summary: Thu Nov 16 04:20:13 2023 </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Equations:</span></span>
<span><span class="co">## d_parent/dt = - k_parent * parent</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Model predictions using solution type analytical </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Fitted using 133 model solutions performed in 0.011 s</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Error model: Constant variance </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Error model algorithm: OLS </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Starting values for parameters to be optimised:</span></span>
<span><span class="co">## value type</span></span>
<span><span class="co">## parent_0 89.85 state</span></span>
<span><span class="co">## k_parent 0.10 deparm</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Starting values for the transformed parameters actually optimised:</span></span>
<span><span class="co">## value lower upper</span></span>
<span><span class="co">## parent_0 89.850000 -Inf Inf</span></span>
<span><span class="co">## log_k_parent -2.302585 -Inf Inf</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Fixed parameter values:</span></span>
<span><span class="co">## None</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Results:</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## AIC BIC logLik</span></span>
<span><span class="co">## 93.88778 96.5589 -43.94389</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Optimised, transformed parameters with symmetric confidence intervals:</span></span>
<span><span class="co">## Estimate Std. Error Lower Upper</span></span>
<span><span class="co">## parent_0 92.470 1.28200 89.740 95.200</span></span>
<span><span class="co">## log_k_parent -2.347 0.03763 -2.428 -2.267</span></span>
<span><span class="co">## sigma 2.780 0.46330 1.792 3.767</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Parameter correlation:</span></span>
<span><span class="co">## parent_0 log_k_parent sigma</span></span>
<span><span class="co">## parent_0 1.000e+00 6.186e-01 -1.516e-09</span></span>
<span><span class="co">## log_k_parent 6.186e-01 1.000e+00 -3.124e-09</span></span>
<span><span class="co">## sigma -1.516e-09 -3.124e-09 1.000e+00</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Backtransformed parameters:</span></span>
<span><span class="co">## Confidence intervals for internally transformed parameters are asymmetric.</span></span>
<span><span class="co">## t-test (unrealistically) based on the assumption of normal distribution</span></span>
<span><span class="co">## for estimators of untransformed parameters.</span></span>
<span><span class="co">## Estimate t value Pr(>t) Lower Upper</span></span>
<span><span class="co">## parent_0 92.47000 72.13 8.824e-21 89.74000 95.2000</span></span>
<span><span class="co">## k_parent 0.09561 26.57 2.487e-14 0.08824 0.1036</span></span>
<span><span class="co">## sigma 2.78000 6.00 1.216e-05 1.79200 3.7670</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## FOCUS Chi2 error levels in percent:</span></span>
<span><span class="co">## err.min n.optim df</span></span>
<span><span class="co">## All data 3.424 2 7</span></span>
<span><span class="co">## parent 3.424 2 7</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Estimated disappearance times:</span></span>
<span><span class="co">## DT50 DT90</span></span>
<span><span class="co">## parent 7.249 24.08</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Data:</span></span>
<span><span class="co">## time variable observed predicted residual</span></span>
<span><span class="co">## 0 parent 88.3 92.471 -4.1710</span></span>
<span><span class="co">## 0 parent 91.4 92.471 -1.0710</span></span>
<span><span class="co">## 1 parent 85.6 84.039 1.5610</span></span>
<span><span class="co">## 1 parent 84.5 84.039 0.4610</span></span>
<span><span class="co">## 2 parent 78.9 76.376 2.5241</span></span>
<span><span class="co">## 2 parent 77.6 76.376 1.2241</span></span>
<span><span class="co">## 3 parent 72.0 69.412 2.5884</span></span>
<span><span class="co">## 3 parent 71.9 69.412 2.4884</span></span>
<span><span class="co">## 5 parent 50.3 57.330 -7.0301</span></span>
<span><span class="co">## 5 parent 59.4 57.330 2.0699</span></span>
<span><span class="co">## 7 parent 47.0 47.352 -0.3515</span></span>
<span><span class="co">## 7 parent 45.1 47.352 -2.2515</span></span>
<span><span class="co">## 14 parent 27.7 24.247 3.4528</span></span>
<span><span class="co">## 14 parent 27.3 24.247 3.0528</span></span>
<span><span class="co">## 21 parent 10.0 12.416 -2.4163</span></span>
<span><span class="co">## 21 parent 10.4 12.416 -2.0163</span></span>
<span><span class="co">## 30 parent 2.9 5.251 -2.3513</span></span>
<span><span class="co">## 30 parent 4.0 5.251 -1.2513</span></span></code></pre>
<p>A plot of the fit is obtained with the plot function for mkinfit
objects.</p>
<div class="sourceCode" id="cb4"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">m.L1.SFO</span>, show_errmin <span class="op">=</span> <span class="cn">TRUE</span>, main <span class="op">=</span> <span class="st">"FOCUS L1 - SFO"</span><span class="op">)</span></span></code></pre></div>
<p><img src="FOCUS_L_files/figure-html/unnamed-chunk-4-1.png" width="576"></p>
<p>The residual plot can be easily obtained by</p>
<div class="sourceCode" id="cb5"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="../reference/mkinresplot.html">mkinresplot</a></span><span class="op">(</span><span class="va">m.L1.SFO</span>, ylab <span class="op">=</span> <span class="st">"Observed"</span>, xlab <span class="op">=</span> <span class="st">"Time"</span><span class="op">)</span></span></code></pre></div>
<p><img src="FOCUS_L_files/figure-html/unnamed-chunk-5-1.png" width="576"></p>
<p>For comparison, the FOMC model is fitted as well, and the <span class="math inline">\(\chi^2\)</span> error level is checked.</p>
<div class="sourceCode" id="cb6"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">m.L1.FOMC</span> <span class="op"><-</span> <span class="fu"><a href="../reference/mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="st">"FOMC"</span>, <span class="va">FOCUS_2006_L1_mkin</span>, quiet<span class="op">=</span><span class="cn">TRUE</span><span class="op">)</span></span></code></pre></div>
<pre><code><span><span class="co">## Warning in mkinfit("FOMC", FOCUS_2006_L1_mkin, quiet = TRUE): Optimisation did not converge:</span></span>
<span><span class="co">## false convergence (8)</span></span></code></pre>
<div class="sourceCode" id="cb8"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">m.L1.FOMC</span>, show_errmin <span class="op">=</span> <span class="cn">TRUE</span>, main <span class="op">=</span> <span class="st">"FOCUS L1 - FOMC"</span><span class="op">)</span></span></code></pre></div>
<p><img src="FOCUS_L_files/figure-html/unnamed-chunk-6-1.png" width="576"></p>
<div class="sourceCode" id="cb9"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/pkg/saemix/man/summary-methods.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">m.L1.FOMC</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></span></code></pre></div>
<pre><code><span><span class="co">## Warning in sqrt(diag(covar)): NaNs produced</span></span></code></pre>
<pre><code><span><span class="co">## Warning in sqrt(1/diag(V)): NaNs produced</span></span></code></pre>
<pre><code><span><span class="co">## Warning in cov2cor(ans$covar): diag(.) had 0 or NA entries; non-finite result</span></span>
<span><span class="co">## is doubtful</span></span></code></pre>
<pre><code><span><span class="co">## mkin version used for fitting: 1.2.6 </span></span>
<span><span class="co">## R version used for fitting: 4.3.2 </span></span>
<span><span class="co">## Date of fit: Thu Nov 16 04:20:13 2023 </span></span>
<span><span class="co">## Date of summary: Thu Nov 16 04:20:13 2023 </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Equations:</span></span>
<span><span class="co">## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Model predictions using solution type analytical </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Fitted using 342 model solutions performed in 0.023 s</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Error model: Constant variance </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Error model algorithm: OLS </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Starting values for parameters to be optimised:</span></span>
<span><span class="co">## value type</span></span>
<span><span class="co">## parent_0 89.85 state</span></span>
<span><span class="co">## alpha 1.00 deparm</span></span>
<span><span class="co">## beta 10.00 deparm</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Starting values for the transformed parameters actually optimised:</span></span>
<span><span class="co">## value lower upper</span></span>
<span><span class="co">## parent_0 89.850000 -Inf Inf</span></span>
<span><span class="co">## log_alpha 0.000000 -Inf Inf</span></span>
<span><span class="co">## log_beta 2.302585 -Inf Inf</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Fixed parameter values:</span></span>
<span><span class="co">## None</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Warning(s): </span></span>
<span><span class="co">## Optimisation did not converge:</span></span>
<span><span class="co">## false convergence (8)</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Results:</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## AIC BIC logLik</span></span>
<span><span class="co">## 95.88782 99.44931 -43.94391</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Optimised, transformed parameters with symmetric confidence intervals:</span></span>
<span><span class="co">## Estimate Std. Error Lower Upper</span></span>
<span><span class="co">## parent_0 92.47 1.2820 89.720 95.220</span></span>
<span><span class="co">## log_alpha 13.20 NaN NaN NaN</span></span>
<span><span class="co">## log_beta 15.54 NaN NaN NaN</span></span>
<span><span class="co">## sigma 2.78 0.4607 1.792 3.768</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Parameter correlation:</span></span>
<span><span class="co">## parent_0 log_alpha log_beta sigma</span></span>
<span><span class="co">## parent_0 1.000000 NaN NaN 0.000603</span></span>
<span><span class="co">## log_alpha NaN 1 NaN NaN</span></span>
<span><span class="co">## log_beta NaN NaN 1 NaN</span></span>
<span><span class="co">## sigma 0.000603 NaN NaN 1.000000</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Backtransformed parameters:</span></span>
<span><span class="co">## Confidence intervals for internally transformed parameters are asymmetric.</span></span>
<span><span class="co">## t-test (unrealistically) based on the assumption of normal distribution</span></span>
<span><span class="co">## for estimators of untransformed parameters.</span></span>
<span><span class="co">## Estimate t value Pr(>t) Lower Upper</span></span>
<span><span class="co">## parent_0 9.247e+01 NA NA 89.720 95.220</span></span>
<span><span class="co">## alpha 5.386e+05 NA NA NA NA</span></span>
<span><span class="co">## beta 5.633e+06 NA NA NA NA</span></span>
<span><span class="co">## sigma 2.780e+00 NA NA 1.792 3.768</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## FOCUS Chi2 error levels in percent:</span></span>
<span><span class="co">## err.min n.optim df</span></span>
<span><span class="co">## All data 3.619 3 6</span></span>
<span><span class="co">## parent 3.619 3 6</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Estimated disappearance times:</span></span>
<span><span class="co">## DT50 DT90 DT50back</span></span>
<span><span class="co">## parent 7.249 24.08 7.249</span></span></code></pre>
<p>We get a warning that the default optimisation algorithm
<code>Port</code> did not converge, which is an indication that the
model is overparameterised, <em>i.e.</em> contains too many parameters
that are ill-defined as a consequence.</p>
<p>And in fact, due to the higher number of parameters, and the lower
number of degrees of freedom of the fit, the <span class="math inline">\(\chi^2\)</span> error level is actually higher for
the FOMC model (3.6%) than for the SFO model (3.4%). Additionally, the
parameters <code>log_alpha</code> and <code>log_beta</code> internally
fitted in the model have excessive confidence intervals, that span more
than 25 orders of magnitude (!) when backtransformed to the scale of
<code>alpha</code> and <code>beta</code>. Also, the t-test for
significant difference from zero does not indicate such a significant
difference, with p-values greater than 0.1, and finally, the parameter
correlation of <code>log_alpha</code> and <code>log_beta</code> is
1.000, clearly indicating that the model is overparameterised.</p>
<p>The <span class="math inline">\(\chi^2\)</span> error levels reported
in Appendix 3 and Appendix 7 to the FOCUS kinetics report are rounded to
integer percentages and partly deviate by one percentage point from the
results calculated by mkin. The reason for this is not known. However,
mkin gives the same <span class="math inline">\(\chi^2\)</span> error
levels as the kinfit package and the calculation routines of the kinfit
package have been extensively compared to the results obtained by the
KinGUI software, as documented in the kinfit package vignette. KinGUI
was the first widely used standard package in this field. Also, the
calculation of <span class="math inline">\(\chi^2\)</span> error levels
was compared with KinGUII, CAKE and DegKin manager in a project
sponsored by the German Umweltbundesamt <span class="citation">(Ranke
2014)</span>.</p>
</div>
<div class="section level2">
<h2 id="laboratory-data-l2">Laboratory Data L2<a class="anchor" aria-label="anchor" href="#laboratory-data-l2"></a>
</h2>
<p>The following code defines example dataset L2 from the FOCUS kinetics
report, p. 287:</p>
<div class="sourceCode" id="cb14"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">FOCUS_2006_L2</span> <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html" class="external-link">data.frame</a></span><span class="op">(</span></span>
<span> t <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/rep.html" class="external-link">rep</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0</span>, <span class="fl">1</span>, <span class="fl">3</span>, <span class="fl">7</span>, <span class="fl">14</span>, <span class="fl">28</span><span class="op">)</span>, each <span class="op">=</span> <span class="fl">2</span><span class="op">)</span>,</span>
<span> parent <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">96.1</span>, <span class="fl">91.8</span>, <span class="fl">41.4</span>, <span class="fl">38.7</span>,</span>
<span> <span class="fl">19.3</span>, <span class="fl">22.3</span>, <span class="fl">4.6</span>, <span class="fl">4.6</span>,</span>
<span> <span class="fl">2.6</span>, <span class="fl">1.2</span>, <span class="fl">0.3</span>, <span class="fl">0.6</span><span class="op">)</span><span class="op">)</span></span>
<span><span class="va">FOCUS_2006_L2_mkin</span> <span class="op"><-</span> <span class="fu"><a href="../reference/mkin_wide_to_long.html">mkin_wide_to_long</a></span><span class="op">(</span><span class="va">FOCUS_2006_L2</span><span class="op">)</span></span></code></pre></div>
<div class="section level3">
<h3 id="sfo-fit-for-l2">SFO fit for L2<a class="anchor" aria-label="anchor" href="#sfo-fit-for-l2"></a>
</h3>
<p>Again, the SFO model is fitted and the result is plotted. The
residual plot can be obtained simply by adding the argument
<code>show_residuals</code> to the plot command.</p>
<div class="sourceCode" id="cb15"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">m.L2.SFO</span> <span class="op"><-</span> <span class="fu"><a href="../reference/mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="va">FOCUS_2006_L2_mkin</span>, quiet<span class="op">=</span><span class="cn">TRUE</span><span class="op">)</span></span>
<span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">m.L2.SFO</span>, show_residuals <span class="op">=</span> <span class="cn">TRUE</span>, show_errmin <span class="op">=</span> <span class="cn">TRUE</span>,</span>
<span> main <span class="op">=</span> <span class="st">"FOCUS L2 - SFO"</span><span class="op">)</span></span></code></pre></div>
<p><img src="FOCUS_L_files/figure-html/unnamed-chunk-8-1.png" width="672"></p>
<p>The <span class="math inline">\(\chi^2\)</span> error level of 14%
suggests that the model does not fit very well. This is also obvious
from the plots of the fit, in which we have included the residual
plot.</p>
<p>In the FOCUS kinetics report, it is stated that there is no apparent
systematic error observed from the residual plot up to the measured DT90
(approximately at day 5), and there is an underestimation beyond that
point.</p>
<p>We may add that it is difficult to judge the random nature of the
residuals just from the three samplings at days 0, 1 and 3. Also, it is
not clear <em>a priori</em> why a consistent underestimation after the
approximate DT90 should be irrelevant. However, this can be rationalised
by the fact that the FOCUS fate models generally only implement SFO
kinetics.</p>
</div>
<div class="section level3">
<h3 id="fomc-fit-for-l2">FOMC fit for L2<a class="anchor" aria-label="anchor" href="#fomc-fit-for-l2"></a>
</h3>
<p>For comparison, the FOMC model is fitted as well, and the <span class="math inline">\(\chi^2\)</span> error level is checked.</p>
<div class="sourceCode" id="cb16"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">m.L2.FOMC</span> <span class="op"><-</span> <span class="fu"><a href="../reference/mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="st">"FOMC"</span>, <span class="va">FOCUS_2006_L2_mkin</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>
<span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">m.L2.FOMC</span>, show_residuals <span class="op">=</span> <span class="cn">TRUE</span>,</span>
<span> main <span class="op">=</span> <span class="st">"FOCUS L2 - FOMC"</span><span class="op">)</span></span></code></pre></div>
<p><img src="FOCUS_L_files/figure-html/unnamed-chunk-9-1.png" width="672"></p>
<div class="sourceCode" id="cb17"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/pkg/saemix/man/summary-methods.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">m.L2.FOMC</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></span></code></pre></div>
<pre><code><span><span class="co">## mkin version used for fitting: 1.2.6 </span></span>
<span><span class="co">## R version used for fitting: 4.3.2 </span></span>
<span><span class="co">## Date of fit: Thu Nov 16 04:20:13 2023 </span></span>
<span><span class="co">## Date of summary: Thu Nov 16 04:20:14 2023 </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Equations:</span></span>
<span><span class="co">## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Model predictions using solution type analytical </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Fitted using 239 model solutions performed in 0.014 s</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Error model: Constant variance </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Error model algorithm: OLS </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Starting values for parameters to be optimised:</span></span>
<span><span class="co">## value type</span></span>
<span><span class="co">## parent_0 93.95 state</span></span>
<span><span class="co">## alpha 1.00 deparm</span></span>
<span><span class="co">## beta 10.00 deparm</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Starting values for the transformed parameters actually optimised:</span></span>
<span><span class="co">## value lower upper</span></span>
<span><span class="co">## parent_0 93.950000 -Inf Inf</span></span>
<span><span class="co">## log_alpha 0.000000 -Inf Inf</span></span>
<span><span class="co">## log_beta 2.302585 -Inf Inf</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Fixed parameter values:</span></span>
<span><span class="co">## None</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Results:</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## AIC BIC logLik</span></span>
<span><span class="co">## 61.78966 63.72928 -26.89483</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Optimised, transformed parameters with symmetric confidence intervals:</span></span>
<span><span class="co">## Estimate Std. Error Lower Upper</span></span>
<span><span class="co">## parent_0 93.7700 1.6130 90.05000 97.4900</span></span>
<span><span class="co">## log_alpha 0.3180 0.1559 -0.04149 0.6776</span></span>
<span><span class="co">## log_beta 0.2102 0.2493 -0.36460 0.7850</span></span>
<span><span class="co">## sigma 2.2760 0.4645 1.20500 3.3470</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Parameter correlation:</span></span>
<span><span class="co">## parent_0 log_alpha log_beta sigma</span></span>
<span><span class="co">## parent_0 1.000e+00 -1.151e-01 -2.085e-01 -7.436e-09</span></span>
<span><span class="co">## log_alpha -1.151e-01 1.000e+00 9.741e-01 -1.617e-07</span></span>
<span><span class="co">## log_beta -2.085e-01 9.741e-01 1.000e+00 -1.386e-07</span></span>
<span><span class="co">## sigma -7.436e-09 -1.617e-07 -1.386e-07 1.000e+00</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Backtransformed parameters:</span></span>
<span><span class="co">## Confidence intervals for internally transformed parameters are asymmetric.</span></span>
<span><span class="co">## t-test (unrealistically) based on the assumption of normal distribution</span></span>
<span><span class="co">## for estimators of untransformed parameters.</span></span>
<span><span class="co">## Estimate t value Pr(>t) Lower Upper</span></span>
<span><span class="co">## parent_0 93.770 58.120 4.267e-12 90.0500 97.490</span></span>
<span><span class="co">## alpha 1.374 6.414 1.030e-04 0.9594 1.969</span></span>
<span><span class="co">## beta 1.234 4.012 1.942e-03 0.6945 2.192</span></span>
<span><span class="co">## sigma 2.276 4.899 5.977e-04 1.2050 3.347</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## FOCUS Chi2 error levels in percent:</span></span>
<span><span class="co">## err.min n.optim df</span></span>
<span><span class="co">## All data 6.205 3 3</span></span>
<span><span class="co">## parent 6.205 3 3</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Estimated disappearance times:</span></span>
<span><span class="co">## DT50 DT90 DT50back</span></span>
<span><span class="co">## parent 0.8092 5.356 1.612</span></span></code></pre>
<p>The error level at which the <span class="math inline">\(\chi^2\)</span> test passes is much lower in this
case. Therefore, the FOMC model provides a better description of the
data, as less experimental error has to be assumed in order to explain
the data.</p>
</div>
<div class="section level3">
<h3 id="dfop-fit-for-l2">DFOP fit for L2<a class="anchor" aria-label="anchor" href="#dfop-fit-for-l2"></a>
</h3>
<p>Fitting the four parameter DFOP model further reduces the <span class="math inline">\(\chi^2\)</span> error level.</p>
<div class="sourceCode" id="cb19"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">m.L2.DFOP</span> <span class="op"><-</span> <span class="fu"><a href="../reference/mkinfit.html">mkinfit</a></span><span class="op">(</span><span class="st">"DFOP"</span>, <span class="va">FOCUS_2006_L2_mkin</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>
<span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">m.L2.DFOP</span>, show_residuals <span class="op">=</span> <span class="cn">TRUE</span>, show_errmin <span class="op">=</span> <span class="cn">TRUE</span>,</span>
<span> main <span class="op">=</span> <span class="st">"FOCUS L2 - DFOP"</span><span class="op">)</span></span></code></pre></div>
<p><img src="FOCUS_L_files/figure-html/unnamed-chunk-10-1.png" width="672"></p>
<div class="sourceCode" id="cb20"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/pkg/saemix/man/summary-methods.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">m.L2.DFOP</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></span></code></pre></div>
<pre><code><span><span class="co">## mkin version used for fitting: 1.2.6 </span></span>
<span><span class="co">## R version used for fitting: 4.3.2 </span></span>
<span><span class="co">## Date of fit: Thu Nov 16 04:20:14 2023 </span></span>
<span><span class="co">## Date of summary: Thu Nov 16 04:20:14 2023 </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Equations:</span></span>
<span><span class="co">## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *</span></span>
<span><span class="co">## time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))</span></span>
<span><span class="co">## * parent</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Model predictions using solution type analytical </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Fitted using 581 model solutions performed in 0.041 s</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Error model: Constant variance </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Error model algorithm: OLS </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Starting values for parameters to be optimised:</span></span>
<span><span class="co">## value type</span></span>
<span><span class="co">## parent_0 93.95 state</span></span>
<span><span class="co">## k1 0.10 deparm</span></span>
<span><span class="co">## k2 0.01 deparm</span></span>
<span><span class="co">## g 0.50 deparm</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Starting values for the transformed parameters actually optimised:</span></span>
<span><span class="co">## value lower upper</span></span>
<span><span class="co">## parent_0 93.950000 -Inf Inf</span></span>
<span><span class="co">## log_k1 -2.302585 -Inf Inf</span></span>
<span><span class="co">## log_k2 -4.605170 -Inf Inf</span></span>
<span><span class="co">## g_qlogis 0.000000 -Inf Inf</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Fixed parameter values:</span></span>
<span><span class="co">## None</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Results:</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## AIC BIC logLik</span></span>
<span><span class="co">## 52.36695 54.79148 -21.18347</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Optimised, transformed parameters with symmetric confidence intervals:</span></span>
<span><span class="co">## Estimate Std. Error Lower Upper</span></span>
<span><span class="co">## parent_0 93.950 9.998e-01 91.5900 96.3100</span></span>
<span><span class="co">## log_k1 3.113 1.849e+03 -4369.0000 4375.0000</span></span>
<span><span class="co">## log_k2 -1.088 6.285e-02 -1.2370 -0.9394</span></span>
<span><span class="co">## g_qlogis -0.399 9.946e-02 -0.6342 -0.1638</span></span>
<span><span class="co">## sigma 1.414 2.886e-01 0.7314 2.0960</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Parameter correlation:</span></span>
<span><span class="co">## parent_0 log_k1 log_k2 g_qlogis sigma</span></span>
<span><span class="co">## parent_0 1.000e+00 6.763e-07 -8.944e-10 2.665e-01 -1.083e-09</span></span>
<span><span class="co">## log_k1 6.763e-07 1.000e+00 1.112e-04 -2.187e-04 -1.027e-05</span></span>
<span><span class="co">## log_k2 -8.944e-10 1.112e-04 1.000e+00 -7.903e-01 9.464e-09</span></span>
<span><span class="co">## g_qlogis 2.665e-01 -2.187e-04 -7.903e-01 1.000e+00 -1.532e-08</span></span>
<span><span class="co">## sigma -1.083e-09 -1.027e-05 9.464e-09 -1.532e-08 1.000e+00</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Backtransformed parameters:</span></span>
<span><span class="co">## Confidence intervals for internally transformed parameters are asymmetric.</span></span>
<span><span class="co">## t-test (unrealistically) based on the assumption of normal distribution</span></span>
<span><span class="co">## for estimators of untransformed parameters.</span></span>
<span><span class="co">## Estimate t value Pr(>t) Lower Upper</span></span>
<span><span class="co">## parent_0 93.9500 9.397e+01 2.036e-12 91.5900 96.3100</span></span>
<span><span class="co">## k1 22.4900 5.533e-04 4.998e-01 0.0000 Inf</span></span>
<span><span class="co">## k2 0.3369 1.591e+01 4.697e-07 0.2904 0.3909</span></span>
<span><span class="co">## g 0.4016 1.680e+01 3.238e-07 0.3466 0.4591</span></span>
<span><span class="co">## sigma 1.4140 4.899e+00 8.776e-04 0.7314 2.0960</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## FOCUS Chi2 error levels in percent:</span></span>
<span><span class="co">## err.min n.optim df</span></span>
<span><span class="co">## All data 2.53 4 2</span></span>
<span><span class="co">## parent 2.53 4 2</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Estimated disappearance times:</span></span>
<span><span class="co">## DT50 DT90 DT50back DT50_k1 DT50_k2</span></span>
<span><span class="co">## parent 0.5335 5.311 1.599 0.03083 2.058</span></span></code></pre>
<p>Here, the DFOP model is clearly the best-fit model for dataset L2
based on the chi^2 error level criterion.</p>
</div>
</div>
<div class="section level2">
<h2 id="laboratory-data-l3">Laboratory Data L3<a class="anchor" aria-label="anchor" href="#laboratory-data-l3"></a>
</h2>
<p>The following code defines example dataset L3 from the FOCUS kinetics
report, p. 290.</p>
<div class="sourceCode" id="cb22"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">FOCUS_2006_L3</span> <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html" class="external-link">data.frame</a></span><span class="op">(</span></span>
<span> t <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0</span>, <span class="fl">3</span>, <span class="fl">7</span>, <span class="fl">14</span>, <span class="fl">30</span>, <span class="fl">60</span>, <span class="fl">91</span>, <span class="fl">120</span><span class="op">)</span>,</span>
<span> parent <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">97.8</span>, <span class="fl">60</span>, <span class="fl">51</span>, <span class="fl">43</span>, <span class="fl">35</span>, <span class="fl">22</span>, <span class="fl">15</span>, <span class="fl">12</span><span class="op">)</span><span class="op">)</span></span>
<span><span class="va">FOCUS_2006_L3_mkin</span> <span class="op"><-</span> <span class="fu"><a href="../reference/mkin_wide_to_long.html">mkin_wide_to_long</a></span><span class="op">(</span><span class="va">FOCUS_2006_L3</span><span class="op">)</span></span></code></pre></div>
<div class="section level3">
<h3 id="fit-multiple-models">Fit multiple models<a class="anchor" aria-label="anchor" href="#fit-multiple-models"></a>
</h3>
<p>As of mkin version 0.9-39 (June 2015), we can fit several models to
one or more datasets in one call to the function <code>mmkin</code>. The
datasets have to be passed in a list, in this case a named list holding
only the L3 dataset prepared above.</p>
<div class="sourceCode" id="cb23"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="co"># Only use one core here, not to offend the CRAN checks</span></span>
<span><span class="va">mm.L3</span> <span class="op"><-</span> <span class="fu"><a href="../reference/mmkin.html">mmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"FOMC"</span>, <span class="st">"DFOP"</span><span class="op">)</span>, cores <span class="op">=</span> <span class="fl">1</span>,</span>
<span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="st">"FOCUS L3"</span> <span class="op">=</span> <span class="va">FOCUS_2006_L3_mkin</span><span class="op">)</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>
<span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">mm.L3</span><span class="op">)</span></span></code></pre></div>
<p><img src="FOCUS_L_files/figure-html/unnamed-chunk-12-1.png" width="700"></p>
<p>The <span class="math inline">\(\chi^2\)</span> error level of 21% as
well as the plot suggest that the SFO model does not fit very well. The
FOMC model performs better, with an error level at which the <span class="math inline">\(\chi^2\)</span> test passes of 7%. Fitting the
four parameter DFOP model further reduces the <span class="math inline">\(\chi^2\)</span> error level considerably.</p>
</div>
<div class="section level3">
<h3 id="accessing-mmkin-objects">Accessing mmkin objects<a class="anchor" aria-label="anchor" href="#accessing-mmkin-objects"></a>
</h3>
<p>The objects returned by mmkin are arranged like a matrix, with models
as a row index and datasets as a column index.</p>
<p>We can extract the summary and plot for <em>e.g.</em> the DFOP fit,
using square brackets for indexing which will result in the use of the
summary and plot functions working on mkinfit objects.</p>
<div class="sourceCode" id="cb24"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/pkg/saemix/man/summary-methods.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">mm.L3</span><span class="op">[[</span><span class="st">"DFOP"</span>, <span class="fl">1</span><span class="op">]</span><span class="op">]</span><span class="op">)</span></span></code></pre></div>
<pre><code><span><span class="co">## mkin version used for fitting: 1.2.6 </span></span>
<span><span class="co">## R version used for fitting: 4.3.2 </span></span>
<span><span class="co">## Date of fit: Thu Nov 16 04:20:14 2023 </span></span>
<span><span class="co">## Date of summary: Thu Nov 16 04:20:14 2023 </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Equations:</span></span>
<span><span class="co">## d_parent/dt = - ((k1 * g * exp(-k1 * time) + k2 * (1 - g) * exp(-k2 *</span></span>
<span><span class="co">## time)) / (g * exp(-k1 * time) + (1 - g) * exp(-k2 * time)))</span></span>
<span><span class="co">## * parent</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Model predictions using solution type analytical </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Fitted using 376 model solutions performed in 0.024 s</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Error model: Constant variance </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Error model algorithm: OLS </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Starting values for parameters to be optimised:</span></span>
<span><span class="co">## value type</span></span>
<span><span class="co">## parent_0 97.80 state</span></span>
<span><span class="co">## k1 0.10 deparm</span></span>
<span><span class="co">## k2 0.01 deparm</span></span>
<span><span class="co">## g 0.50 deparm</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Starting values for the transformed parameters actually optimised:</span></span>
<span><span class="co">## value lower upper</span></span>
<span><span class="co">## parent_0 97.800000 -Inf Inf</span></span>
<span><span class="co">## log_k1 -2.302585 -Inf Inf</span></span>
<span><span class="co">## log_k2 -4.605170 -Inf Inf</span></span>
<span><span class="co">## g_qlogis 0.000000 -Inf Inf</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Fixed parameter values:</span></span>
<span><span class="co">## None</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Results:</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## AIC BIC logLik</span></span>
<span><span class="co">## 32.97732 33.37453 -11.48866</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Optimised, transformed parameters with symmetric confidence intervals:</span></span>
<span><span class="co">## Estimate Std. Error Lower Upper</span></span>
<span><span class="co">## parent_0 97.7500 1.01900 94.5000 101.000000</span></span>
<span><span class="co">## log_k1 -0.6612 0.10050 -0.9812 -0.341300</span></span>
<span><span class="co">## log_k2 -4.2860 0.04322 -4.4230 -4.148000</span></span>
<span><span class="co">## g_qlogis -0.1739 0.05270 -0.3416 -0.006142</span></span>
<span><span class="co">## sigma 1.0170 0.25430 0.2079 1.827000</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Parameter correlation:</span></span>
<span><span class="co">## parent_0 log_k1 log_k2 g_qlogis sigma</span></span>
<span><span class="co">## parent_0 1.000e+00 1.732e-01 2.282e-02 4.009e-01 -9.696e-08</span></span>
<span><span class="co">## log_k1 1.732e-01 1.000e+00 4.945e-01 -5.809e-01 7.148e-07</span></span>
<span><span class="co">## log_k2 2.282e-02 4.945e-01 1.000e+00 -6.812e-01 1.022e-06</span></span>
<span><span class="co">## g_qlogis 4.009e-01 -5.809e-01 -6.812e-01 1.000e+00 -7.930e-07</span></span>
<span><span class="co">## sigma -9.696e-08 7.148e-07 1.022e-06 -7.930e-07 1.000e+00</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Backtransformed parameters:</span></span>
<span><span class="co">## Confidence intervals for internally transformed parameters are asymmetric.</span></span>
<span><span class="co">## t-test (unrealistically) based on the assumption of normal distribution</span></span>
<span><span class="co">## for estimators of untransformed parameters.</span></span>
<span><span class="co">## Estimate t value Pr(>t) Lower Upper</span></span>
<span><span class="co">## parent_0 97.75000 95.960 1.248e-06 94.50000 101.00000</span></span>
<span><span class="co">## k1 0.51620 9.947 1.081e-03 0.37490 0.71090</span></span>
<span><span class="co">## k2 0.01376 23.140 8.840e-05 0.01199 0.01579</span></span>
<span><span class="co">## g 0.45660 34.920 2.581e-05 0.41540 0.49850</span></span>
<span><span class="co">## sigma 1.01700 4.000 1.400e-02 0.20790 1.82700</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## FOCUS Chi2 error levels in percent:</span></span>
<span><span class="co">## err.min n.optim df</span></span>
<span><span class="co">## All data 2.225 4 4</span></span>
<span><span class="co">## parent 2.225 4 4</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Estimated disappearance times:</span></span>
<span><span class="co">## DT50 DT90 DT50back DT50_k1 DT50_k2</span></span>
<span><span class="co">## parent 7.464 123 37.03 1.343 50.37</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Data:</span></span>
<span><span class="co">## time variable observed predicted residual</span></span>
<span><span class="co">## 0 parent 97.8 97.75 0.05396</span></span>
<span><span class="co">## 3 parent 60.0 60.45 -0.44933</span></span>
<span><span class="co">## 7 parent 51.0 49.44 1.56338</span></span>
<span><span class="co">## 14 parent 43.0 43.84 -0.83632</span></span>
<span><span class="co">## 30 parent 35.0 35.15 -0.14707</span></span>
<span><span class="co">## 60 parent 22.0 23.26 -1.25919</span></span>
<span><span class="co">## 91 parent 15.0 15.18 -0.18181</span></span>
<span><span class="co">## 120 parent 12.0 10.19 1.81395</span></span></code></pre>
<div class="sourceCode" id="cb26"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">mm.L3</span><span class="op">[[</span><span class="st">"DFOP"</span>, <span class="fl">1</span><span class="op">]</span><span class="op">]</span>, show_errmin <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span></code></pre></div>
<p><img src="FOCUS_L_files/figure-html/unnamed-chunk-13-1.png" width="700"></p>
<p>Here, a look to the model plot, the confidence intervals of the
parameters and the correlation matrix suggest that the parameter
estimates are reliable, and the DFOP model can be used as the best-fit
model based on the <span class="math inline">\(\chi^2\)</span> error
level criterion for laboratory data L3.</p>
<p>This is also an example where the standard t-test for the parameter
<code>g_ilr</code> is misleading, as it tests for a significant
difference from zero. In this case, zero appears to be the correct value
for this parameter, and the confidence interval for the backtransformed
parameter <code>g</code> is quite narrow.</p>
</div>
</div>
<div class="section level2">
<h2 id="laboratory-data-l4">Laboratory Data L4<a class="anchor" aria-label="anchor" href="#laboratory-data-l4"></a>
</h2>
<p>The following code defines example dataset L4 from the FOCUS kinetics
report, p. 293:</p>
<div class="sourceCode" id="cb27"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="va">FOCUS_2006_L4</span> <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/data.frame.html" class="external-link">data.frame</a></span><span class="op">(</span></span>
<span> t <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">0</span>, <span class="fl">3</span>, <span class="fl">7</span>, <span class="fl">14</span>, <span class="fl">30</span>, <span class="fl">60</span>, <span class="fl">91</span>, <span class="fl">120</span><span class="op">)</span>,</span>
<span> parent <span class="op">=</span> <span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="fl">96.6</span>, <span class="fl">96.3</span>, <span class="fl">94.3</span>, <span class="fl">88.8</span>, <span class="fl">74.9</span>, <span class="fl">59.9</span>, <span class="fl">53.5</span>, <span class="fl">49.0</span><span class="op">)</span><span class="op">)</span></span>
<span><span class="va">FOCUS_2006_L4_mkin</span> <span class="op"><-</span> <span class="fu"><a href="../reference/mkin_wide_to_long.html">mkin_wide_to_long</a></span><span class="op">(</span><span class="va">FOCUS_2006_L4</span><span class="op">)</span></span></code></pre></div>
<p>Fits of the SFO and FOMC models, plots and summaries are produced
below:</p>
<div class="sourceCode" id="cb28"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="co"># Only use one core here, not to offend the CRAN checks</span></span>
<span><span class="va">mm.L4</span> <span class="op"><-</span> <span class="fu"><a href="../reference/mmkin.html">mmkin</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/c.html" class="external-link">c</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="st">"FOMC"</span><span class="op">)</span>, cores <span class="op">=</span> <span class="fl">1</span>,</span>
<span> <span class="fu"><a href="https://rdrr.io/r/base/list.html" class="external-link">list</a></span><span class="op">(</span><span class="st">"FOCUS L4"</span> <span class="op">=</span> <span class="va">FOCUS_2006_L4_mkin</span><span class="op">)</span>,</span>
<span> quiet <span class="op">=</span> <span class="cn">TRUE</span><span class="op">)</span></span>
<span><span class="fu"><a href="https://rdrr.io/r/base/plot.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">mm.L4</span><span class="op">)</span></span></code></pre></div>
<p><img src="FOCUS_L_files/figure-html/unnamed-chunk-15-1.png" width="700"></p>
<p>The <span class="math inline">\(\chi^2\)</span> error level of 3.3%
as well as the plot suggest that the SFO model fits very well. The error
level at which the <span class="math inline">\(\chi^2\)</span> test
passes is slightly lower for the FOMC model. However, the difference
appears negligible.</p>
<div class="sourceCode" id="cb29"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/pkg/saemix/man/summary-methods.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">mm.L4</span><span class="op">[[</span><span class="st">"SFO"</span>, <span class="fl">1</span><span class="op">]</span><span class="op">]</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></span></code></pre></div>
<pre><code><span><span class="co">## mkin version used for fitting: 1.2.6 </span></span>
<span><span class="co">## R version used for fitting: 4.3.2 </span></span>
<span><span class="co">## Date of fit: Thu Nov 16 04:20:14 2023 </span></span>
<span><span class="co">## Date of summary: Thu Nov 16 04:20:15 2023 </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Equations:</span></span>
<span><span class="co">## d_parent/dt = - k_parent * parent</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Model predictions using solution type analytical </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Fitted using 142 model solutions performed in 0.01 s</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Error model: Constant variance </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Error model algorithm: OLS </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Starting values for parameters to be optimised:</span></span>
<span><span class="co">## value type</span></span>
<span><span class="co">## parent_0 96.6 state</span></span>
<span><span class="co">## k_parent 0.1 deparm</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Starting values for the transformed parameters actually optimised:</span></span>
<span><span class="co">## value lower upper</span></span>
<span><span class="co">## parent_0 96.600000 -Inf Inf</span></span>
<span><span class="co">## log_k_parent -2.302585 -Inf Inf</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Fixed parameter values:</span></span>
<span><span class="co">## None</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Results:</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## AIC BIC logLik</span></span>
<span><span class="co">## 47.12133 47.35966 -20.56067</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Optimised, transformed parameters with symmetric confidence intervals:</span></span>
<span><span class="co">## Estimate Std. Error Lower Upper</span></span>
<span><span class="co">## parent_0 96.440 1.69900 92.070 100.800</span></span>
<span><span class="co">## log_k_parent -5.030 0.07059 -5.211 -4.848</span></span>
<span><span class="co">## sigma 3.162 0.79050 1.130 5.194</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Parameter correlation:</span></span>
<span><span class="co">## parent_0 log_k_parent sigma</span></span>
<span><span class="co">## parent_0 1.000e+00 5.938e-01 3.430e-07</span></span>
<span><span class="co">## log_k_parent 5.938e-01 1.000e+00 5.885e-07</span></span>
<span><span class="co">## sigma 3.430e-07 5.885e-07 1.000e+00</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Backtransformed parameters:</span></span>
<span><span class="co">## Confidence intervals for internally transformed parameters are asymmetric.</span></span>
<span><span class="co">## t-test (unrealistically) based on the assumption of normal distribution</span></span>
<span><span class="co">## for estimators of untransformed parameters.</span></span>
<span><span class="co">## Estimate t value Pr(>t) Lower Upper</span></span>
<span><span class="co">## parent_0 96.440000 56.77 1.604e-08 92.070000 1.008e+02</span></span>
<span><span class="co">## k_parent 0.006541 14.17 1.578e-05 0.005455 7.842e-03</span></span>
<span><span class="co">## sigma 3.162000 4.00 5.162e-03 1.130000 5.194e+00</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## FOCUS Chi2 error levels in percent:</span></span>
<span><span class="co">## err.min n.optim df</span></span>
<span><span class="co">## All data 3.287 2 6</span></span>
<span><span class="co">## parent 3.287 2 6</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Estimated disappearance times:</span></span>
<span><span class="co">## DT50 DT90</span></span>
<span><span class="co">## parent 106 352</span></span></code></pre>
<div class="sourceCode" id="cb31"><pre class="downlit sourceCode r">
<code class="sourceCode R"><span><span class="fu"><a href="https://rdrr.io/pkg/saemix/man/summary-methods.html" class="external-link">summary</a></span><span class="op">(</span><span class="va">mm.L4</span><span class="op">[[</span><span class="st">"FOMC"</span>, <span class="fl">1</span><span class="op">]</span><span class="op">]</span>, data <span class="op">=</span> <span class="cn">FALSE</span><span class="op">)</span></span></code></pre></div>
<pre><code><span><span class="co">## mkin version used for fitting: 1.2.6 </span></span>
<span><span class="co">## R version used for fitting: 4.3.2 </span></span>
<span><span class="co">## Date of fit: Thu Nov 16 04:20:15 2023 </span></span>
<span><span class="co">## Date of summary: Thu Nov 16 04:20:15 2023 </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Equations:</span></span>
<span><span class="co">## d_parent/dt = - (alpha/beta) * 1/((time/beta) + 1) * parent</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Model predictions using solution type analytical </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Fitted using 224 model solutions performed in 0.014 s</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Error model: Constant variance </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Error model algorithm: OLS </span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Starting values for parameters to be optimised:</span></span>
<span><span class="co">## value type</span></span>
<span><span class="co">## parent_0 96.6 state</span></span>
<span><span class="co">## alpha 1.0 deparm</span></span>
<span><span class="co">## beta 10.0 deparm</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Starting values for the transformed parameters actually optimised:</span></span>
<span><span class="co">## value lower upper</span></span>
<span><span class="co">## parent_0 96.600000 -Inf Inf</span></span>
<span><span class="co">## log_alpha 0.000000 -Inf Inf</span></span>
<span><span class="co">## log_beta 2.302585 -Inf Inf</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Fixed parameter values:</span></span>
<span><span class="co">## None</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Results:</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## AIC BIC logLik</span></span>
<span><span class="co">## 40.37255 40.69032 -16.18628</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Optimised, transformed parameters with symmetric confidence intervals:</span></span>
<span><span class="co">## Estimate Std. Error Lower Upper</span></span>
<span><span class="co">## parent_0 99.1400 1.2670 95.6300 102.7000</span></span>
<span><span class="co">## log_alpha -0.3506 0.2616 -1.0770 0.3756</span></span>
<span><span class="co">## log_beta 4.1740 0.3938 3.0810 5.2670</span></span>
<span><span class="co">## sigma 1.8300 0.4575 0.5598 3.1000</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Parameter correlation:</span></span>
<span><span class="co">## parent_0 log_alpha log_beta sigma</span></span>
<span><span class="co">## parent_0 1.000e+00 -4.696e-01 -5.543e-01 -2.447e-07</span></span>
<span><span class="co">## log_alpha -4.696e-01 1.000e+00 9.889e-01 2.198e-08</span></span>
<span><span class="co">## log_beta -5.543e-01 9.889e-01 1.000e+00 4.923e-08</span></span>
<span><span class="co">## sigma -2.447e-07 2.198e-08 4.923e-08 1.000e+00</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Backtransformed parameters:</span></span>
<span><span class="co">## Confidence intervals for internally transformed parameters are asymmetric.</span></span>
<span><span class="co">## t-test (unrealistically) based on the assumption of normal distribution</span></span>
<span><span class="co">## for estimators of untransformed parameters.</span></span>
<span><span class="co">## Estimate t value Pr(>t) Lower Upper</span></span>
<span><span class="co">## parent_0 99.1400 78.250 7.993e-08 95.6300 102.700</span></span>
<span><span class="co">## alpha 0.7042 3.823 9.365e-03 0.3407 1.456</span></span>
<span><span class="co">## beta 64.9800 2.540 3.201e-02 21.7800 193.900</span></span>
<span><span class="co">## sigma 1.8300 4.000 8.065e-03 0.5598 3.100</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## FOCUS Chi2 error levels in percent:</span></span>
<span><span class="co">## err.min n.optim df</span></span>
<span><span class="co">## All data 2.029 3 5</span></span>
<span><span class="co">## parent 2.029 3 5</span></span>
<span><span class="co">## </span></span>
<span><span class="co">## Estimated disappearance times:</span></span>
<span><span class="co">## DT50 DT90 DT50back</span></span>
<span><span class="co">## parent 108.9 1644 494.9</span></span></code></pre>
</div>
<div class="section level2">
<h2 class="unnumbered" id="references">References<a class="anchor" aria-label="anchor" href="#references"></a>
</h2>
<div id="refs" class="references csl-bib-body hanging-indent">
<div id="ref-ranke2014" class="csl-entry">
Ranke, Johannes. 2014. <span>“<span class="nocase">Prüfung und
Validierung von Modellierungssoftware als Alternative zu ModelMaker
4.0</span>.”</span> Umweltbundesamt Projektnummer 27452.
</div>
</div>
</div>
</main><aside class="col-md-3"><nav id="toc"><h2>On this page</h2>
</nav></aside>
</div>
<footer><div class="pkgdown-footer-left">
<p></p>
<p>Developed by Johannes Ranke.</p>
</div>
<div class="pkgdown-footer-right">
<p></p>
<p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.7.</p>
</div>
</footer>
</div>
</body>
</html>
|