1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
<!DOCTYPE html>
<!-- Generated by pkgdown: do not edit by hand --><html lang="en"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><meta charset="utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge"><meta name="viewport" content="width=device-width, initial-scale=1.0"><title>Synthetic data for hierarchical kinetic degradation models — ds_mixed • mkin</title><!-- jquery --><script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.4.1/jquery.min.js" integrity="sha256-CSXorXvZcTkaix6Yvo6HppcZGetbYMGWSFlBw8HfCJo=" crossorigin="anonymous"></script><!-- Bootstrap --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/css/bootstrap.min.css" integrity="sha256-bZLfwXAP04zRMK2BjiO8iu9pf4FbLqX6zitd+tIvLhE=" crossorigin="anonymous"><script src="https://cdnjs.cloudflare.com/ajax/libs/twitter-bootstrap/3.4.1/js/bootstrap.min.js" integrity="sha256-nuL8/2cJ5NDSSwnKD8VqreErSWHtnEP9E7AySL+1ev4=" crossorigin="anonymous"></script><!-- bootstrap-toc --><link rel="stylesheet" href="../bootstrap-toc.css"><script src="../bootstrap-toc.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous"><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous"><!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- pkgdown --><link href="../pkgdown.css" rel="stylesheet"><script src="../pkgdown.js"></script><meta property="og:title" content="Synthetic data for hierarchical kinetic degradation models — ds_mixed"><meta property="og:description" content="The R code used to create this data object is installed with this package in
the 'dataset_generation' directory."><!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]--></head><body data-spy="scroll" data-target="#toc">
<div class="container template-reference-topic">
<header><div class="navbar navbar-default navbar-fixed-top" role="navigation">
<div class="container">
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#navbar" aria-expanded="false">
<span class="sr-only">Toggle navigation</span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
<span class="icon-bar"></span>
</button>
<span class="navbar-brand">
<a class="navbar-link" href="../index.html">mkin</a>
<span class="version label label-default" data-toggle="tooltip" data-placement="bottom" title="Released version">1.2.6</span>
</span>
</div>
<div id="navbar" class="navbar-collapse collapse">
<ul class="nav navbar-nav"><li>
<a href="../reference/index.html">Reference</a>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">
Articles
<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu"><li>
<a href="../articles/mkin.html">Introduction to mkin</a>
</li>
<li class="divider">
<li class="dropdown-header">Example evaluations with (generalised) nonlinear least squares</li>
<li>
<a href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>
</li>
<li>
<a href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>
</li>
<li>
<a href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a>
</li>
<li class="divider">
<li class="dropdown-header">Example evaluations with hierarchical models (nonlinear mixed-effects models)</li>
<li>
<a href="../articles/prebuilt/2022_dmta_parent.html">Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P</a>
</li>
<li>
<a href="../articles/prebuilt/2022_dmta_pathway.html">Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P</a>
</li>
<li>
<a href="../articles/prebuilt/2023_mesotrione_parent.html">Testing covariate modelling in hierarchical parent degradation kinetics with residue data on mesotrione</a>
</li>
<li>
<a href="../articles/prebuilt/2022_cyan_pathway.html">Testing hierarchical pathway kinetics with residue data on cyantraniliprole</a>
</li>
<li>
<a href="../articles/web_only/dimethenamid_2018.html">Comparison of saemix and nlme evaluations of dimethenamid data from 2018</a>
</li>
<li>
<a href="../articles/web_only/multistart.html">Short demo of the multistart method</a>
</li>
<li class="divider">
<li class="dropdown-header">Performance</li>
<li>
<a href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>
</li>
<li>
<a href="../articles/web_only/benchmarks.html">Benchmark timings for mkin</a>
</li>
<li>
<a href="../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a>
</li>
<li class="divider">
<li class="dropdown-header">Miscellaneous</li>
<li>
<a href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a>
</li>
<li>
<a href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a>
</li>
</ul></li>
<li>
<a href="../news/index.html">News</a>
</li>
</ul><ul class="nav navbar-nav navbar-right"><li>
<a href="https://github.com/jranke/mkin/" class="external-link">
<span class="fab fa-github fa-lg"></span>
</a>
</li>
</ul></div><!--/.nav-collapse -->
</div><!--/.container -->
</div><!--/.navbar -->
</header><div class="row">
<div class="col-md-9 contents">
<div class="page-header">
<h1>Synthetic data for hierarchical kinetic degradation models</h1>
<small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/R/ds_mixed.R" class="external-link"><code>R/ds_mixed.R</code></a></small>
<div class="hidden name"><code>ds_mixed.Rd</code></div>
</div>
<div class="ref-description">
<p>The R code used to create this data object is installed with this package in
the 'dataset_generation' directory.</p>
</div>
<div id="ref-examples">
<h2>Examples</h2>
<div class="sourceCode"><pre class="sourceCode r"><code><span class="r-in"><span><span class="co"># \dontrun{</span></span></span>
<span class="r-in"><span> <span class="va">sfo_mmkin</span> <span class="op"><-</span> <span class="fu"><a href="mmkin.html">mmkin</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="va">ds_sfo</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>, error_model <span class="op">=</span> <span class="st">"tc"</span>, cores <span class="op">=</span> <span class="fl">15</span><span class="op">)</span></span></span>
<span class="r-in"><span> <span class="va">sfo_saem</span> <span class="op"><-</span> <span class="fu"><a href="saem.html">saem</a></span><span class="op">(</span><span class="va">sfo_mmkin</span>, no_random_effect <span class="op">=</span> <span class="st">"parent_0"</span><span class="op">)</span></span></span>
<span class="r-in"><span> <span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">sfo_saem</span><span class="op">)</span></span></span>
<span class="r-plt img"><img src="ds_mixed-1.png" alt="" width="700" height="433"></span>
<span class="r-in"><span><span class="co"># }</span></span></span>
<span class="r-in"><span></span></span>
<span class="r-in"><span><span class="co"># This is the code used to generate the datasets</span></span></span>
<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/base/cat.html" class="external-link">cat</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/readLines.html" class="external-link">readLines</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/system.file.html" class="external-link">system.file</a></span><span class="op">(</span><span class="st">"dataset_generation/ds_mixed.R"</span>, package <span class="op">=</span> <span class="st">"mkin"</span><span class="op">)</span><span class="op">)</span>, sep <span class="op">=</span> <span class="st">"\n"</span><span class="op">)</span></span></span>
<span class="r-out co"><span class="r-pr">#></span> # Synthetic data for hierarchical kinetic models</span>
<span class="r-out co"><span class="r-pr">#></span> # Refactored version of the code previously in tests/testthat/setup_script.R</span>
<span class="r-out co"><span class="r-pr">#></span> # The number of datasets was 3 for FOMC, and 10 for HS in that script, now it</span>
<span class="r-out co"><span class="r-pr">#></span> # is always 15 for consistency</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> library(mkin) # We use mkinmod and mkinpredict</span>
<span class="r-out co"><span class="r-pr">#></span> sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)</span>
<span class="r-out co"><span class="r-pr">#></span> n <- 15</span>
<span class="r-out co"><span class="r-pr">#></span> log_sd <- 0.3</span>
<span class="r-out co"><span class="r-pr">#></span> err_1 = list(const = 1, prop = 0.05)</span>
<span class="r-out co"><span class="r-pr">#></span> tc <- function(value) sigma_twocomp(value, err_1$const, err_1$prop)</span>
<span class="r-out co"><span class="r-pr">#></span> const <- function(value) 2</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> set.seed(123456)</span>
<span class="r-out co"><span class="r-pr">#></span> SFO <- mkinmod(parent = mkinsub("SFO"))</span>
<span class="r-out co"><span class="r-pr">#></span> sfo_pop <- list(parent_0 = 100, k_parent = 0.03)</span>
<span class="r-out co"><span class="r-pr">#></span> sfo_parms <- as.matrix(data.frame(</span>
<span class="r-out co"><span class="r-pr">#></span> k_parent = rlnorm(n, log(sfo_pop$k_parent), log_sd)))</span>
<span class="r-out co"><span class="r-pr">#></span> set.seed(123456)</span>
<span class="r-out co"><span class="r-pr">#></span> ds_sfo <- lapply(1:n, function(i) {</span>
<span class="r-out co"><span class="r-pr">#></span> ds_mean <- mkinpredict(SFO, sfo_parms[i, ],</span>
<span class="r-out co"><span class="r-pr">#></span> c(parent = sfo_pop$parent_0), sampling_times)</span>
<span class="r-out co"><span class="r-pr">#></span> add_err(ds_mean, tc, n = 1)[[1]]</span>
<span class="r-out co"><span class="r-pr">#></span> })</span>
<span class="r-out co"><span class="r-pr">#></span> attr(ds_sfo, "pop") <- sfo_pop</span>
<span class="r-out co"><span class="r-pr">#></span> attr(ds_sfo, "parms") <- sfo_parms</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> set.seed(123456)</span>
<span class="r-out co"><span class="r-pr">#></span> FOMC <- mkinmod(parent = mkinsub("FOMC"))</span>
<span class="r-out co"><span class="r-pr">#></span> fomc_pop <- list(parent_0 = 100, alpha = 2, beta = 8)</span>
<span class="r-out co"><span class="r-pr">#></span> fomc_parms <- as.matrix(data.frame(</span>
<span class="r-out co"><span class="r-pr">#></span> alpha = rlnorm(n, log(fomc_pop$alpha), 0.4),</span>
<span class="r-out co"><span class="r-pr">#></span> beta = rlnorm(n, log(fomc_pop$beta), 0.2)))</span>
<span class="r-out co"><span class="r-pr">#></span> set.seed(123456)</span>
<span class="r-out co"><span class="r-pr">#></span> ds_fomc <- lapply(1:n, function(i) {</span>
<span class="r-out co"><span class="r-pr">#></span> ds_mean <- mkinpredict(FOMC, fomc_parms[i, ],</span>
<span class="r-out co"><span class="r-pr">#></span> c(parent = fomc_pop$parent_0), sampling_times)</span>
<span class="r-out co"><span class="r-pr">#></span> add_err(ds_mean, tc, n = 1)[[1]]</span>
<span class="r-out co"><span class="r-pr">#></span> })</span>
<span class="r-out co"><span class="r-pr">#></span> attr(ds_fomc, "pop") <- fomc_pop</span>
<span class="r-out co"><span class="r-pr">#></span> attr(ds_fomc, "parms") <- fomc_parms</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> set.seed(123456)</span>
<span class="r-out co"><span class="r-pr">#></span> DFOP <- mkinmod(parent = mkinsub("DFOP"))</span>
<span class="r-out co"><span class="r-pr">#></span> dfop_pop <- list(parent_0 = 100, k1 = 0.06, k2 = 0.015, g = 0.4)</span>
<span class="r-out co"><span class="r-pr">#></span> dfop_parms <- as.matrix(data.frame(</span>
<span class="r-out co"><span class="r-pr">#></span> k1 = rlnorm(n, log(dfop_pop$k1), log_sd),</span>
<span class="r-out co"><span class="r-pr">#></span> k2 = rlnorm(n, log(dfop_pop$k2), log_sd),</span>
<span class="r-out co"><span class="r-pr">#></span> g = plogis(rnorm(n, qlogis(dfop_pop$g), log_sd))))</span>
<span class="r-out co"><span class="r-pr">#></span> set.seed(123456)</span>
<span class="r-out co"><span class="r-pr">#></span> ds_dfop <- lapply(1:n, function(i) {</span>
<span class="r-out co"><span class="r-pr">#></span> ds_mean <- mkinpredict(DFOP, dfop_parms[i, ],</span>
<span class="r-out co"><span class="r-pr">#></span> c(parent = dfop_pop$parent_0), sampling_times)</span>
<span class="r-out co"><span class="r-pr">#></span> add_err(ds_mean, tc, n = 1)[[1]]</span>
<span class="r-out co"><span class="r-pr">#></span> })</span>
<span class="r-out co"><span class="r-pr">#></span> attr(ds_dfop, "pop") <- dfop_pop</span>
<span class="r-out co"><span class="r-pr">#></span> attr(ds_dfop, "parms") <- dfop_parms</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> set.seed(123456)</span>
<span class="r-out co"><span class="r-pr">#></span> HS <- mkinmod(parent = mkinsub("HS"))</span>
<span class="r-out co"><span class="r-pr">#></span> hs_pop <- list(parent_0 = 100, k1 = 0.08, k2 = 0.01, tb = 15)</span>
<span class="r-out co"><span class="r-pr">#></span> hs_parms <- as.matrix(data.frame(</span>
<span class="r-out co"><span class="r-pr">#></span> k1 = rlnorm(n, log(hs_pop$k1), log_sd),</span>
<span class="r-out co"><span class="r-pr">#></span> k2 = rlnorm(n, log(hs_pop$k2), log_sd),</span>
<span class="r-out co"><span class="r-pr">#></span> tb = rlnorm(n, log(hs_pop$tb), 0.1)))</span>
<span class="r-out co"><span class="r-pr">#></span> set.seed(123456)</span>
<span class="r-out co"><span class="r-pr">#></span> ds_hs <- lapply(1:n, function(i) {</span>
<span class="r-out co"><span class="r-pr">#></span> ds_mean <- mkinpredict(HS, hs_parms[i, ],</span>
<span class="r-out co"><span class="r-pr">#></span> c(parent = hs_pop$parent_0), sampling_times)</span>
<span class="r-out co"><span class="r-pr">#></span> add_err(ds_mean, const, n = 1)[[1]]</span>
<span class="r-out co"><span class="r-pr">#></span> })</span>
<span class="r-out co"><span class="r-pr">#></span> attr(ds_hs, "pop") <- hs_pop</span>
<span class="r-out co"><span class="r-pr">#></span> attr(ds_hs, "parms") <- hs_parms</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> set.seed(123456)</span>
<span class="r-out co"><span class="r-pr">#></span> DFOP_SFO <- mkinmod(</span>
<span class="r-out co"><span class="r-pr">#></span> parent = mkinsub("DFOP", "m1"),</span>
<span class="r-out co"><span class="r-pr">#></span> m1 = mkinsub("SFO"),</span>
<span class="r-out co"><span class="r-pr">#></span> quiet = TRUE)</span>
<span class="r-out co"><span class="r-pr">#></span> dfop_sfo_pop <- list(parent_0 = 100,</span>
<span class="r-out co"><span class="r-pr">#></span> k_m1 = 0.007, f_parent_to_m1 = 0.5,</span>
<span class="r-out co"><span class="r-pr">#></span> k1 = 0.1, k2 = 0.02, g = 0.5)</span>
<span class="r-out co"><span class="r-pr">#></span> dfop_sfo_parms <- as.matrix(data.frame(</span>
<span class="r-out co"><span class="r-pr">#></span> k1 = rlnorm(n, log(dfop_sfo_pop$k1), log_sd),</span>
<span class="r-out co"><span class="r-pr">#></span> k2 = rlnorm(n, log(dfop_sfo_pop$k2), log_sd),</span>
<span class="r-out co"><span class="r-pr">#></span> g = plogis(rnorm(n, qlogis(dfop_sfo_pop$g), log_sd)),</span>
<span class="r-out co"><span class="r-pr">#></span> f_parent_to_m1 = plogis(rnorm(n,</span>
<span class="r-out co"><span class="r-pr">#></span> qlogis(dfop_sfo_pop$f_parent_to_m1), log_sd)),</span>
<span class="r-out co"><span class="r-pr">#></span> k_m1 = rlnorm(n, log(dfop_sfo_pop$k_m1), log_sd)))</span>
<span class="r-out co"><span class="r-pr">#></span> ds_dfop_sfo_mean <- lapply(1:n,</span>
<span class="r-out co"><span class="r-pr">#></span> function(i) {</span>
<span class="r-out co"><span class="r-pr">#></span> mkinpredict(DFOP_SFO, dfop_sfo_parms[i, ],</span>
<span class="r-out co"><span class="r-pr">#></span> c(parent = dfop_sfo_pop$parent_0, m1 = 0), sampling_times)</span>
<span class="r-out co"><span class="r-pr">#></span> }</span>
<span class="r-out co"><span class="r-pr">#></span> )</span>
<span class="r-out co"><span class="r-pr">#></span> set.seed(123456)</span>
<span class="r-out co"><span class="r-pr">#></span> ds_dfop_sfo <- lapply(ds_dfop_sfo_mean, function(ds) {</span>
<span class="r-out co"><span class="r-pr">#></span> add_err(ds,</span>
<span class="r-out co"><span class="r-pr">#></span> sdfunc = function(value) sqrt(err_1$const^2 + value^2 * err_1$prop^2),</span>
<span class="r-out co"><span class="r-pr">#></span> n = 1, secondary = "m1")[[1]]</span>
<span class="r-out co"><span class="r-pr">#></span> })</span>
<span class="r-out co"><span class="r-pr">#></span> attr(ds_dfop_sfo, "pop") <- dfop_sfo_pop</span>
<span class="r-out co"><span class="r-pr">#></span> attr(ds_dfop_sfo, "parms") <- dfop_sfo_parms</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> #save(ds_sfo, ds_fomc, ds_dfop, ds_hs, ds_dfop_sfo, file = "data/ds_mixed.rda", version = 2)</span>
</code></pre></div>
</div>
</div>
<div class="col-md-3 hidden-xs hidden-sm" id="pkgdown-sidebar">
<nav id="toc" data-toggle="toc" class="sticky-top"><h2 data-toc-skip>Contents</h2>
</nav></div>
</div>
<footer><div class="copyright">
<p></p><p>Developed by Johannes Ranke.</p>
</div>
<div class="pkgdown">
<p></p><p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.7.</p>
</div>
</footer></div>
</body></html>
|