1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
|
<!DOCTYPE html>
<!-- Generated by pkgdown: do not edit by hand --><html lang="en"><head><meta http-equiv="Content-Type" content="text/html; charset=UTF-8"><meta charset="utf-8"><meta http-equiv="X-UA-Compatible" content="IE=edge"><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"><meta name="description" content="The R code used to create this data object is installed with this package in
the 'dataset_generation' directory."><title>Synthetic data for hierarchical kinetic degradation models — ds_mixed • mkin</title><script src="../deps/jquery-3.6.0/jquery-3.6.0.min.js"></script><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"><link href="../deps/bootstrap-5.2.2/bootstrap.min.css" rel="stylesheet"><script src="../deps/bootstrap-5.2.2/bootstrap.bundle.min.js"></script><!-- Font Awesome icons --><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/all.min.css" integrity="sha256-mmgLkCYLUQbXn0B1SRqzHar6dCnv9oZFPEC1g1cwlkk=" crossorigin="anonymous"><link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.12.1/css/v4-shims.min.css" integrity="sha256-wZjR52fzng1pJHwx4aV2AO3yyTOXrcDW7jBpJtTwVxw=" crossorigin="anonymous"><!-- bootstrap-toc --><script src="https://cdn.jsdelivr.net/gh/afeld/bootstrap-toc@v1.0.1/dist/bootstrap-toc.min.js" integrity="sha256-4veVQbu7//Lk5TSmc7YV48MxtMy98e26cf5MrgZYnwo=" crossorigin="anonymous"></script><!-- headroom.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/headroom.min.js" integrity="sha256-AsUX4SJE1+yuDu5+mAVzJbuYNPHj/WroHuZ8Ir/CkE0=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/headroom/0.11.0/jQuery.headroom.min.js" integrity="sha256-ZX/yNShbjqsohH1k95liqY9Gd8uOiE1S4vZc+9KQ1K4=" crossorigin="anonymous"></script><!-- clipboard.js --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><!-- search --><script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/6.4.6/fuse.js" integrity="sha512-zv6Ywkjyktsohkbp9bb45V6tEMoWhzFzXis+LrMehmJZZSys19Yxf1dopHx7WzIKxr5tK2dVcYmaCk2uqdjF4A==" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/autocomplete.js/0.38.0/autocomplete.jquery.min.js" integrity="sha512-GU9ayf+66Xx2TmpxqJpliWbT5PiGYxpaG8rfnBEk1LL8l1KGkRShhngwdXK1UgqhAzWpZHSiYPc09/NwDQIGyg==" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/mark.min.js" integrity="sha512-5CYOlHXGh6QpOFA/TeTylKLWfB3ftPsde7AnmhuitiTX4K5SqCLBeKro6sPS8ilsz1Q4NRx3v8Ko2IBiszzdww==" crossorigin="anonymous"></script><!-- pkgdown --><script src="../pkgdown.js"></script><meta property="og:title" content="Synthetic data for hierarchical kinetic degradation models — ds_mixed"><meta property="og:description" content="The R code used to create this data object is installed with this package in
the 'dataset_generation' directory."><!-- mathjax --><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js" integrity="sha256-nvJJv9wWKEm88qvoQl9ekL2J+k/RWIsaSScxxlsrv8k=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/config/TeX-AMS-MML_HTMLorMML.js" integrity="sha256-84DKXVJXs0/F8OTMzX4UR909+jtl4G7SPypPavF+GfA=" crossorigin="anonymous"></script><!--[if lt IE 9]>
<script src="https://oss.maxcdn.com/html5shiv/3.7.3/html5shiv.min.js"></script>
<script src="https://oss.maxcdn.com/respond/1.4.2/respond.min.js"></script>
<![endif]--></head><body>
<a href="#main" class="visually-hidden-focusable">Skip to contents</a>
<nav class="navbar fixed-top navbar-default navbar-expand-lg bg-light"><div class="container">
<a class="navbar-brand me-2" href="../index.html">mkin</a>
<small class="nav-text text-default me-auto" data-bs-toggle="tooltip" data-bs-placement="bottom" title="Released version">1.2.6</small>
<button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-target="#navbar" aria-controls="navbar" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div id="navbar" class="collapse navbar-collapse ms-3">
<ul class="navbar-nav me-auto"><li class="active nav-item">
<a class="nav-link" href="../reference/index.html">Reference</a>
</li>
<li class="nav-item dropdown">
<a href="#" class="nav-link dropdown-toggle" data-bs-toggle="dropdown" role="button" aria-expanded="false" aria-haspopup="true" id="dropdown-articles">Articles</a>
<div class="dropdown-menu" aria-labelledby="dropdown-articles">
<a class="dropdown-item" href="../articles/mkin.html">Introduction to mkin</a>
<div class="dropdown-divider"></div>
<h6 class="dropdown-header" data-toc-skip>Example evaluations with (generalised) nonlinear least squares</h6>
<a class="dropdown-item" href="../articles/FOCUS_D.html">Example evaluation of FOCUS Example Dataset D</a>
<a class="dropdown-item" href="../articles/FOCUS_L.html">Example evaluation of FOCUS Laboratory Data L1 to L3</a>
<a class="dropdown-item" href="../articles/web_only/FOCUS_Z.html">Example evaluation of FOCUS Example Dataset Z</a>
<div class="dropdown-divider"></div>
<h6 class="dropdown-header" data-toc-skip>Example evaluations with hierarchical models (nonlinear mixed-effects models)</h6>
<a class="dropdown-item" href="../articles/prebuilt/2022_dmta_parent.html">Testing hierarchical parent degradation kinetics with residue data on dimethenamid and dimethenamid-P</a>
<a class="dropdown-item" href="../articles/prebuilt/2022_dmta_pathway.html">Testing hierarchical pathway kinetics with residue data on dimethenamid and dimethenamid-P</a>
<a class="dropdown-item" href="../articles/prebuilt/2023_mesotrione_parent.html">Testing covariate modelling in hierarchical parent degradation kinetics with residue data on mesotrione</a>
<a class="dropdown-item" href="../articles/prebuilt/2022_cyan_pathway.html">Testing hierarchical pathway kinetics with residue data on cyantraniliprole</a>
<a class="dropdown-item" href="../articles/web_only/dimethenamid_2018.html">Comparison of saemix and nlme evaluations of dimethenamid data from 2018</a>
<a class="dropdown-item" href="../articles/web_only/multistart.html">Short demo of the multistart method</a>
<div class="dropdown-divider"></div>
<h6 class="dropdown-header" data-toc-skip>Performance</h6>
<a class="dropdown-item" href="../articles/web_only/compiled_models.html">Performance benefit by using compiled model definitions in mkin</a>
<a class="dropdown-item" href="../articles/web_only/benchmarks.html">Benchmark timings for mkin</a>
<a class="dropdown-item" href="../articles/web_only/saem_benchmarks.html">Benchmark timings for saem.mmkin</a>
<div class="dropdown-divider"></div>
<h6 class="dropdown-header" data-toc-skip>Miscellaneous</h6>
<a class="dropdown-item" href="../articles/twa.html">Calculation of time weighted average concentrations with mkin</a>
<a class="dropdown-item" href="../articles/web_only/NAFTA_examples.html">Example evaluation of NAFTA SOP Attachment examples</a>
</div>
</li>
<li class="nav-item">
<a class="nav-link" href="../news/index.html">News</a>
</li>
</ul><form class="form-inline my-2 my-lg-0" role="search">
<input type="search" class="form-control me-sm-2" aria-label="Toggle navigation" name="search-input" data-search-index="../search.json" id="search-input" placeholder="Search for" autocomplete="off"></form>
<ul class="navbar-nav"><li class="nav-item">
<a class="external-link nav-link" href="https://github.com/jranke/mkin/" aria-label="github">
<span class="fab fa fab fa-github fa-lg"></span>
</a>
</li>
</ul></div>
</div>
</nav><div class="container template-reference-topic">
<div class="row">
<main id="main" class="col-md-9"><div class="page-header">
<img src="" class="logo" alt=""><h1>Synthetic data for hierarchical kinetic degradation models</h1>
<small class="dont-index">Source: <a href="https://github.com/jranke/mkin/blob/HEAD/R/ds_mixed.R" class="external-link"><code>R/ds_mixed.R</code></a></small>
<div class="d-none name"><code>ds_mixed.Rd</code></div>
</div>
<div class="ref-description section level2">
<p>The R code used to create this data object is installed with this package in
the 'dataset_generation' directory.</p>
</div>
<div class="section level2">
<h2 id="ref-examples">Examples<a class="anchor" aria-label="anchor" href="#ref-examples"></a></h2>
<div class="sourceCode"><pre class="sourceCode r"><code><span class="r-in"><span><span class="co"># \dontrun{</span></span></span>
<span class="r-in"><span> <span class="va">sfo_mmkin</span> <span class="op"><-</span> <span class="fu"><a href="mmkin.html">mmkin</a></span><span class="op">(</span><span class="st">"SFO"</span>, <span class="va">ds_sfo</span>, quiet <span class="op">=</span> <span class="cn">TRUE</span>, error_model <span class="op">=</span> <span class="st">"tc"</span>, cores <span class="op">=</span> <span class="fl">15</span><span class="op">)</span></span></span>
<span class="r-in"><span> <span class="va">sfo_saem</span> <span class="op"><-</span> <span class="fu"><a href="saem.html">saem</a></span><span class="op">(</span><span class="va">sfo_mmkin</span>, no_random_effect <span class="op">=</span> <span class="st">"parent_0"</span><span class="op">)</span></span></span>
<span class="r-in"><span> <span class="fu"><a href="https://rdrr.io/r/graphics/plot.default.html" class="external-link">plot</a></span><span class="op">(</span><span class="va">sfo_saem</span><span class="op">)</span></span></span>
<span class="r-plt img"><img src="ds_mixed-1.png" alt="" width="700" height="433"></span>
<span class="r-in"><span><span class="co"># }</span></span></span>
<span class="r-in"><span></span></span>
<span class="r-in"><span><span class="co"># This is the code used to generate the datasets</span></span></span>
<span class="r-in"><span><span class="fu"><a href="https://rdrr.io/r/base/cat.html" class="external-link">cat</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/readLines.html" class="external-link">readLines</a></span><span class="op">(</span><span class="fu"><a href="https://rdrr.io/r/base/system.file.html" class="external-link">system.file</a></span><span class="op">(</span><span class="st">"dataset_generation/ds_mixed.R"</span>, package <span class="op">=</span> <span class="st">"mkin"</span><span class="op">)</span><span class="op">)</span>, sep <span class="op">=</span> <span class="st">"\n"</span><span class="op">)</span></span></span>
<span class="r-out co"><span class="r-pr">#></span> # Synthetic data for hierarchical kinetic models</span>
<span class="r-out co"><span class="r-pr">#></span> # Refactored version of the code previously in tests/testthat/setup_script.R</span>
<span class="r-out co"><span class="r-pr">#></span> # The number of datasets was 3 for FOMC, and 10 for HS in that script, now it</span>
<span class="r-out co"><span class="r-pr">#></span> # is always 15 for consistency</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> library(mkin) # We use mkinmod and mkinpredict</span>
<span class="r-out co"><span class="r-pr">#></span> sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)</span>
<span class="r-out co"><span class="r-pr">#></span> n <- 15</span>
<span class="r-out co"><span class="r-pr">#></span> log_sd <- 0.3</span>
<span class="r-out co"><span class="r-pr">#></span> err_1 = list(const = 1, prop = 0.05)</span>
<span class="r-out co"><span class="r-pr">#></span> tc <- function(value) sigma_twocomp(value, err_1$const, err_1$prop)</span>
<span class="r-out co"><span class="r-pr">#></span> const <- function(value) 2</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> set.seed(123456)</span>
<span class="r-out co"><span class="r-pr">#></span> SFO <- mkinmod(parent = mkinsub("SFO"))</span>
<span class="r-out co"><span class="r-pr">#></span> sfo_pop <- list(parent_0 = 100, k_parent = 0.03)</span>
<span class="r-out co"><span class="r-pr">#></span> sfo_parms <- as.matrix(data.frame(</span>
<span class="r-out co"><span class="r-pr">#></span> k_parent = rlnorm(n, log(sfo_pop$k_parent), log_sd)))</span>
<span class="r-out co"><span class="r-pr">#></span> set.seed(123456)</span>
<span class="r-out co"><span class="r-pr">#></span> ds_sfo <- lapply(1:n, function(i) {</span>
<span class="r-out co"><span class="r-pr">#></span> ds_mean <- mkinpredict(SFO, sfo_parms[i, ],</span>
<span class="r-out co"><span class="r-pr">#></span> c(parent = sfo_pop$parent_0), sampling_times)</span>
<span class="r-out co"><span class="r-pr">#></span> add_err(ds_mean, tc, n = 1)[[1]]</span>
<span class="r-out co"><span class="r-pr">#></span> })</span>
<span class="r-out co"><span class="r-pr">#></span> attr(ds_sfo, "pop") <- sfo_pop</span>
<span class="r-out co"><span class="r-pr">#></span> attr(ds_sfo, "parms") <- sfo_parms</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> set.seed(123456)</span>
<span class="r-out co"><span class="r-pr">#></span> FOMC <- mkinmod(parent = mkinsub("FOMC"))</span>
<span class="r-out co"><span class="r-pr">#></span> fomc_pop <- list(parent_0 = 100, alpha = 2, beta = 8)</span>
<span class="r-out co"><span class="r-pr">#></span> fomc_parms <- as.matrix(data.frame(</span>
<span class="r-out co"><span class="r-pr">#></span> alpha = rlnorm(n, log(fomc_pop$alpha), 0.4),</span>
<span class="r-out co"><span class="r-pr">#></span> beta = rlnorm(n, log(fomc_pop$beta), 0.2)))</span>
<span class="r-out co"><span class="r-pr">#></span> set.seed(123456)</span>
<span class="r-out co"><span class="r-pr">#></span> ds_fomc <- lapply(1:n, function(i) {</span>
<span class="r-out co"><span class="r-pr">#></span> ds_mean <- mkinpredict(FOMC, fomc_parms[i, ],</span>
<span class="r-out co"><span class="r-pr">#></span> c(parent = fomc_pop$parent_0), sampling_times)</span>
<span class="r-out co"><span class="r-pr">#></span> add_err(ds_mean, tc, n = 1)[[1]]</span>
<span class="r-out co"><span class="r-pr">#></span> })</span>
<span class="r-out co"><span class="r-pr">#></span> attr(ds_fomc, "pop") <- fomc_pop</span>
<span class="r-out co"><span class="r-pr">#></span> attr(ds_fomc, "parms") <- fomc_parms</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> set.seed(123456)</span>
<span class="r-out co"><span class="r-pr">#></span> DFOP <- mkinmod(parent = mkinsub("DFOP"))</span>
<span class="r-out co"><span class="r-pr">#></span> dfop_pop <- list(parent_0 = 100, k1 = 0.06, k2 = 0.015, g = 0.4)</span>
<span class="r-out co"><span class="r-pr">#></span> dfop_parms <- as.matrix(data.frame(</span>
<span class="r-out co"><span class="r-pr">#></span> k1 = rlnorm(n, log(dfop_pop$k1), log_sd),</span>
<span class="r-out co"><span class="r-pr">#></span> k2 = rlnorm(n, log(dfop_pop$k2), log_sd),</span>
<span class="r-out co"><span class="r-pr">#></span> g = plogis(rnorm(n, qlogis(dfop_pop$g), log_sd))))</span>
<span class="r-out co"><span class="r-pr">#></span> set.seed(123456)</span>
<span class="r-out co"><span class="r-pr">#></span> ds_dfop <- lapply(1:n, function(i) {</span>
<span class="r-out co"><span class="r-pr">#></span> ds_mean <- mkinpredict(DFOP, dfop_parms[i, ],</span>
<span class="r-out co"><span class="r-pr">#></span> c(parent = dfop_pop$parent_0), sampling_times)</span>
<span class="r-out co"><span class="r-pr">#></span> add_err(ds_mean, tc, n = 1)[[1]]</span>
<span class="r-out co"><span class="r-pr">#></span> })</span>
<span class="r-out co"><span class="r-pr">#></span> attr(ds_dfop, "pop") <- dfop_pop</span>
<span class="r-out co"><span class="r-pr">#></span> attr(ds_dfop, "parms") <- dfop_parms</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> set.seed(123456)</span>
<span class="r-out co"><span class="r-pr">#></span> HS <- mkinmod(parent = mkinsub("HS"))</span>
<span class="r-out co"><span class="r-pr">#></span> hs_pop <- list(parent_0 = 100, k1 = 0.08, k2 = 0.01, tb = 15)</span>
<span class="r-out co"><span class="r-pr">#></span> hs_parms <- as.matrix(data.frame(</span>
<span class="r-out co"><span class="r-pr">#></span> k1 = rlnorm(n, log(hs_pop$k1), log_sd),</span>
<span class="r-out co"><span class="r-pr">#></span> k2 = rlnorm(n, log(hs_pop$k2), log_sd),</span>
<span class="r-out co"><span class="r-pr">#></span> tb = rlnorm(n, log(hs_pop$tb), 0.1)))</span>
<span class="r-out co"><span class="r-pr">#></span> set.seed(123456)</span>
<span class="r-out co"><span class="r-pr">#></span> ds_hs <- lapply(1:n, function(i) {</span>
<span class="r-out co"><span class="r-pr">#></span> ds_mean <- mkinpredict(HS, hs_parms[i, ],</span>
<span class="r-out co"><span class="r-pr">#></span> c(parent = hs_pop$parent_0), sampling_times)</span>
<span class="r-out co"><span class="r-pr">#></span> add_err(ds_mean, const, n = 1)[[1]]</span>
<span class="r-out co"><span class="r-pr">#></span> })</span>
<span class="r-out co"><span class="r-pr">#></span> attr(ds_hs, "pop") <- hs_pop</span>
<span class="r-out co"><span class="r-pr">#></span> attr(ds_hs, "parms") <- hs_parms</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> set.seed(123456)</span>
<span class="r-out co"><span class="r-pr">#></span> DFOP_SFO <- mkinmod(</span>
<span class="r-out co"><span class="r-pr">#></span> parent = mkinsub("DFOP", "m1"),</span>
<span class="r-out co"><span class="r-pr">#></span> m1 = mkinsub("SFO"),</span>
<span class="r-out co"><span class="r-pr">#></span> quiet = TRUE)</span>
<span class="r-out co"><span class="r-pr">#></span> dfop_sfo_pop <- list(parent_0 = 100,</span>
<span class="r-out co"><span class="r-pr">#></span> k_m1 = 0.007, f_parent_to_m1 = 0.5,</span>
<span class="r-out co"><span class="r-pr">#></span> k1 = 0.1, k2 = 0.02, g = 0.5)</span>
<span class="r-out co"><span class="r-pr">#></span> dfop_sfo_parms <- as.matrix(data.frame(</span>
<span class="r-out co"><span class="r-pr">#></span> k1 = rlnorm(n, log(dfop_sfo_pop$k1), log_sd),</span>
<span class="r-out co"><span class="r-pr">#></span> k2 = rlnorm(n, log(dfop_sfo_pop$k2), log_sd),</span>
<span class="r-out co"><span class="r-pr">#></span> g = plogis(rnorm(n, qlogis(dfop_sfo_pop$g), log_sd)),</span>
<span class="r-out co"><span class="r-pr">#></span> f_parent_to_m1 = plogis(rnorm(n,</span>
<span class="r-out co"><span class="r-pr">#></span> qlogis(dfop_sfo_pop$f_parent_to_m1), log_sd)),</span>
<span class="r-out co"><span class="r-pr">#></span> k_m1 = rlnorm(n, log(dfop_sfo_pop$k_m1), log_sd)))</span>
<span class="r-out co"><span class="r-pr">#></span> ds_dfop_sfo_mean <- lapply(1:n,</span>
<span class="r-out co"><span class="r-pr">#></span> function(i) {</span>
<span class="r-out co"><span class="r-pr">#></span> mkinpredict(DFOP_SFO, dfop_sfo_parms[i, ],</span>
<span class="r-out co"><span class="r-pr">#></span> c(parent = dfop_sfo_pop$parent_0, m1 = 0), sampling_times)</span>
<span class="r-out co"><span class="r-pr">#></span> }</span>
<span class="r-out co"><span class="r-pr">#></span> )</span>
<span class="r-out co"><span class="r-pr">#></span> set.seed(123456)</span>
<span class="r-out co"><span class="r-pr">#></span> ds_dfop_sfo <- lapply(ds_dfop_sfo_mean, function(ds) {</span>
<span class="r-out co"><span class="r-pr">#></span> add_err(ds,</span>
<span class="r-out co"><span class="r-pr">#></span> sdfunc = function(value) sqrt(err_1$const^2 + value^2 * err_1$prop^2),</span>
<span class="r-out co"><span class="r-pr">#></span> n = 1, secondary = "m1")[[1]]</span>
<span class="r-out co"><span class="r-pr">#></span> })</span>
<span class="r-out co"><span class="r-pr">#></span> attr(ds_dfop_sfo, "pop") <- dfop_sfo_pop</span>
<span class="r-out co"><span class="r-pr">#></span> attr(ds_dfop_sfo, "parms") <- dfop_sfo_parms</span>
<span class="r-out co"><span class="r-pr">#></span> </span>
<span class="r-out co"><span class="r-pr">#></span> #save(ds_sfo, ds_fomc, ds_dfop, ds_hs, ds_dfop_sfo, file = "data/ds_mixed.rda", version = 2)</span>
</code></pre></div>
</div>
</main></div>
<footer><div class="pkgdown-footer-left">
<p></p><p>Developed by Johannes Ranke.</p>
</div>
<div class="pkgdown-footer-right">
<p></p><p>Site built with <a href="https://pkgdown.r-lib.org/" class="external-link">pkgdown</a> 2.0.7.</p>
</div>
</footer></div>
</body></html>
|