1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/plot.mixed.mmkin.R
\name{plot.mixed.mmkin}
\alias{plot.mixed.mmkin}
\title{Plot predictions from a fitted nonlinear mixed model obtained via an mmkin row object}
\usage{
\method{plot}{mixed.mmkin}(
x,
i = 1:ncol(x$mmkin),
obs_vars = names(x$mkinmod$map),
standardized = TRUE,
xlab = "Time",
xlim = range(x$data$time),
resplot = c("predicted", "time"),
pop_curve = "auto",
pred_over = NULL,
test_log_parms = FALSE,
conf.level = 0.6,
default_log_parms = NA,
ymax = "auto",
maxabs = "auto",
ncol.legend = ifelse(length(i) <= 3, length(i) + 1, ifelse(length(i) <= 8, 3, 4)),
nrow.legend = ceiling((length(i) + 1)/ncol.legend),
rel.height.legend = 0.02 + 0.07 * nrow.legend,
rel.height.bottom = 1.1,
pch_ds = 1:length(i),
col_ds = pch_ds + 1,
lty_ds = col_ds,
frame = TRUE,
...
)
}
\arguments{
\item{x}{An object of class \link{mixed.mmkin}, \link{saem.mmkin} or \link{nlme.mmkin}}
\item{i}{A numeric index to select datasets for which to plot the individual predictions,
in case plots get too large}
\item{obs_vars}{A character vector of names of the observed variables for
which the data and the model should be plotted. Defauls to all observed
variables in the model.}
\item{standardized}{Should the residuals be standardized? Only takes effect if
\code{resplot = "time"}.}
\item{xlab}{Label for the x axis.}
\item{xlim}{Plot range in x direction.}
\item{resplot}{Should the residuals plotted against time or against
predicted values?}
\item{pop_curve}{Per default, a population curve is drawn in case
population parameters are fitted by the model, e.g. for saem objects.
In case there is a covariate model, no population curve is currently shown.}
\item{pred_over}{Named list of alternative predictions as obtained
from \link{mkinpredict} with a compatible \link{mkinmod}.}
\item{test_log_parms}{Passed to \link{mean_degparms} in the case of an
\link{mixed.mmkin} object}
\item{conf.level}{Passed to \link{mean_degparms} in the case of an
\link{mixed.mmkin} object}
\item{default_log_parms}{Passed to \link{mean_degparms} in the case of an
\link{mixed.mmkin} object}
\item{ymax}{Vector of maximum y axis values}
\item{maxabs}{Maximum absolute value of the residuals. This is used for the
scaling of the y axis and defaults to "auto".}
\item{ncol.legend}{Number of columns to use in the legend}
\item{nrow.legend}{Number of rows to use in the legend}
\item{rel.height.legend}{The relative height of the legend shown on top}
\item{rel.height.bottom}{The relative height of the bottom plot row}
\item{pch_ds}{Symbols to be used for plotting the data.}
\item{col_ds}{Colors used for plotting the observed data and the
corresponding model prediction lines for the different datasets.}
\item{lty_ds}{Line types to be used for the model predictions.}
\item{frame}{Should a frame be drawn around the plots?}
\item{...}{Further arguments passed to \code{\link{plot}}.}
}
\value{
The function is called for its side effect.
}
\description{
Plot predictions from a fitted nonlinear mixed model obtained via an mmkin row object
}
\examples{
ds <- lapply(experimental_data_for_UBA_2019[6:10],
function(x) x$data[c("name", "time", "value")])
names(ds) <- paste0("ds ", 6:10)
dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"),
A1 = mkinsub("SFO"), quiet = TRUE)
\dontrun{
f <- mmkin(list("DFOP-SFO" = dfop_sfo), ds, quiet = TRUE)
plot(f[, 3:4], standardized = TRUE)
# For this fit we need to increase pnlsMaxiter, and we increase the
# tolerance in order to speed up the fit for this example evaluation
# It still takes 20 seconds to run
f_nlme <- nlme(f, control = list(pnlsMaxIter = 120, tolerance = 1e-3))
plot(f_nlme)
f_saem <- saem(f, transformations = "saemix")
plot(f_saem)
f_obs <- mmkin(list("DFOP-SFO" = dfop_sfo), ds, quiet = TRUE, error_model = "obs")
f_nlmix <- nlmix(f_obs)
plot(f_nlmix)
# We can overlay the two variants if we generate predictions
pred_nlme <- mkinpredict(dfop_sfo,
f_nlme$bparms.optim[-1],
c(parent = f_nlme$bparms.optim[[1]], A1 = 0),
seq(0, 180, by = 0.2))
plot(f_saem, pred_over = list(nlme = pred_nlme))
}
}
\author{
Johannes Ranke
}
|