aboutsummaryrefslogtreecommitdiff
path: root/R/PEC_sw_exposit.R
diff options
context:
space:
mode:
authorJohannes Ranke <jranke@uni-bremen.de>2024-08-26 17:11:43 +0200
committerJohannes Ranke <jranke@uni-bremen.de>2024-08-26 17:11:43 +0200
commit913c383880da2a5f4bdb71c8a82107afbad6ef13 (patch)
tree1c5a988748fc49fde4c279a96650deb26039b711 /R/PEC_sw_exposit.R
parent9e62ed638e530a5cebebf491de055caca49a56ef (diff)
parent396ba6c42252426a132be56b9f417786a1f276e3 (diff)
Merge branch 'main' into crop_group
Diffstat (limited to 'R/PEC_sw_exposit.R')
-rw-r--r--R/PEC_sw_exposit.R210
1 files changed, 210 insertions, 0 deletions
diff --git a/R/PEC_sw_exposit.R b/R/PEC_sw_exposit.R
new file mode 100644
index 0000000..fe23284
--- /dev/null
+++ b/R/PEC_sw_exposit.R
@@ -0,0 +1,210 @@
+#' Runoff loss percentages as used in Exposit 3
+#'
+#' A table of the loss percentages used in Exposit 3 for the twelve different Koc classes
+#'
+#' @name perc_runoff_exposit
+#' @format A data frame with percentage values for the dissolved fraction and the fraction
+#' bound to eroding particles, with Koc classes used as row names
+#' \describe{
+#' \item{Koc_lower_bound}{The lower bound of the Koc class}
+#' \item{dissolved}{The percentage of the applied substance transferred to an
+#' adjacent water body in the dissolved phase}
+#' \item{bound}{The percentage of the applied substance transferred to an
+#' adjacent water body bound to eroding particles}
+#' }
+#' @source Excel 3.02 spreadsheet available from
+#' \url{https://www.bvl.bund.de/SharedDocs/Downloads/04_Pflanzenschutzmittel/zul_umwelt_exposit.html}
+#' @docType data
+#' @examples
+#' print(perc_runoff_exposit)
+"perc_runoff_exposit"
+
+#' Runoff reduction percentages as used in Exposit
+#'
+#' A table of the runoff reduction percentages used in Exposit 3 for different vegetated buffer widths
+#'
+#' @name perc_runoff_reduction_exposit
+#' @format A named list of data frames with reduction percentage values for the
+#' dissolved fraction and the fraction bound to eroding particles, with
+#' vegetated buffer widths as row names. The names of the list items are the Exposit versions
+#' from which the values were taken.
+#' \describe{
+#' \item{dissolved}{The reduction percentage for the dissolved phase}
+#' \item{bound}{The reduction percentage for the particulate phase}
+#' }
+#' @source Excel 3.02 spreadsheet available from
+#' \url{https://www.bvl.bund.de/SharedDocs/Downloads/04_Pflanzenschutzmittel/zul_umwelt_exposit.html}
+#'
+#' Agroscope version 3.01a with additional runoff factors for 3 m and 6 m buffer zones received from Muris Korkaric (not published).
+#' The variant 3.01a2 was introduced for consistency with previous calculations performed by Agroscope for a 3 m buffer zone.
+#' @docType data
+#' @examples
+#' print(perc_runoff_reduction_exposit)
+"perc_runoff_reduction_exposit"
+
+#' Calculate PEC surface water due to runoff and erosion as in Exposit 3
+#'
+#' This is a reimplementation of the calculation described in the Exposit 3.02 spreadsheet file,
+#' in the worksheet "Konzept Runoff".
+#'
+#' It is recommened to specify the arguments `rate`, `Koc`, `DT50`, `t_runoff`, `V_ditch` and `V_event`
+#' using [units::units] from the `units` package.
+#'
+#' @importFrom units as_units set_units drop_units
+#' @importFrom dplyr across mutate
+#' @param rate The application rate in g/ha
+#' @param interception The fraction intercepted by the crop
+#' @param Koc The sorption coefficient to soil organic carbon
+#' @param DT50 The soil half-life in days
+#' @param t_runoff The time between application and the runoff event, where degradation occurs, in days
+#' @param exposit_reduction_version The version of the reduction factors to be used. "3.02" is the current
+#' version used in Germany, "3.01a" is the version with additional percentages for 3 m and 6 m buffer
+#' zones used in Switzerland. "3.01a2" is a version introduced for consistency with previous calculations
+#' performed for a 3 m buffer zone in Switzerland, with the same reduction being applied to the dissolved
+#' and the bound fraction.
+#' @param V_ditch The volume of the ditch is assumed to be 1 m * 100 m * 30 cm = 30 m3
+#' @param V_event The unreduced runoff volume, equivalent to 10 mm precipitation on 1 ha
+#' @param dilution The dilution factor
+#' @return A list containing the following components
+#' \describe{
+#' \item{perc_runoff}{The runoff percentages for dissolved and bound substance}
+#' \item{runoff}{A matrix containing dissolved and bound input for the different distances}
+#' \item{PEC_sw_runoff}{A matrix containing PEC values for dissolved and bound substance
+#' for the different distances. If the rate was given in g/ha, the PECsw are in microg/L.}
+#' }
+#' @export
+#' @source Excel 3.02 spreadsheet available from
+#' \url{https://www.bvl.bund.de/SharedDocs/Downloads/04_Pflanzenschutzmittel/zul_umwelt_exposit.html}
+#' @seealso \code{\link{perc_runoff_exposit}} for runoff loss percentages and \code{\link{perc_runoff_reduction_exposit}} for runoff reduction percentages used
+#' @examples
+#' PEC_sw_exposit_runoff(500, Koc = 150)
+#' PEC_sw_exposit_runoff(600, Koc = 10000, DT50 = 195, exposit = "3.01a")
+PEC_sw_exposit_runoff <- function(rate, interception = 0, Koc, DT50 = set_units(Inf, "d"),
+ t_runoff = set_units(3, "days"),
+ exposit_reduction_version = c("3.02", "3.01a", "3.01a2", "2.0"),
+ V_ditch = set_units(30, "m3"), V_event = set_units(100, "m3"), dilution = 2)
+{
+ # Set default units if not specified
+ if (!inherits(rate, "units")) rate <- set_units(rate, "g/ha")
+ if (!inherits(Koc, "units")) Koc <- set_units(Koc, "L/kg")
+ if (!inherits(DT50, "units")) DT50 <- set_units(DT50, "d")
+ if (!inherits(t_runoff, "units")) t_runoff <- set_units(t_runoff, "d")
+ if (!inherits(V_ditch, "units")) V_ditch <- set_units(V_ditch, "m3")
+ if (!inherits(V_event, "units")) V_event <- set_units(V_event, "m3")
+
+ k_deg <- log(2)/DT50
+
+ # The input is calculated for an area of 1 ha
+ input <- rate * as_units(1, "ha") * (1 - interception) * exp(as.numeric(-k_deg * t_runoff))
+ input_units <- units(input)
+ input_numeric <- drop_units(input)
+
+ if (length(Koc) > 1) stop("Only one compound at a time supported")
+
+ exposit_reduction_version <- match.arg(exposit_reduction_version)
+ reduction_runoff <- pfm::perc_runoff_reduction_exposit[[exposit_reduction_version]] / 100
+
+ transfer_runoff <- 1 - reduction_runoff
+
+ V_runoff <- V_event * (1 - reduction_runoff[["dissolved"]])
+ V_flowing_ditch_runoff <- dilution * (V_ditch + V_runoff)
+
+ f_runoff_exposit <- function(Koc) {
+ Koc_breaks <- c(pfm::perc_runoff_exposit$Koc_lower_bound, set_units(Inf, "L/kg"))
+ Koc_classes <- as.character(cut(Koc, Koc_breaks, labels = rownames(pfm::perc_runoff_exposit)))
+ perc_runoff <- pfm::perc_runoff_exposit[Koc_classes, c("dissolved", "bound")]
+ if (identical(Koc, 0)) perc_runoff <- c(dissolved = 0, bound = 0)
+ return(unlist(perc_runoff) / 100)
+ }
+ f_runoff <- f_runoff_exposit(Koc)
+
+ runoff_dissolved <- input_numeric * f_runoff["dissolved"] * transfer_runoff[, "dissolved"]
+ runoff_bound <- input_numeric * f_runoff["bound"] * transfer_runoff[, "bound"]
+ runoff_input <- cbind(dissolved = runoff_dissolved, bound = runoff_bound,
+ total = runoff_dissolved + runoff_bound)
+ rownames(runoff_input) <- rownames(reduction_runoff)
+ units(runoff_input) <- input_units
+
+ dn <- dimnames(runoff_input)
+ PEC_sw_runoff <- set_units(runoff_input / V_flowing_ditch_runoff, "\u00B5g/L")
+ dimnames(PEC_sw_runoff) <- dn
+
+ result <- list(
+ perc_runoff = 100 * f_runoff,
+ runoff = as.data.frame(runoff_input),
+ PEC_sw_runoff = as.data.frame(PEC_sw_runoff))
+ return(result)
+}
+
+#' Calculate PEC surface water due to drainage as in Exposit 3
+#'
+#' This is a reimplementation of the calculation described in the Exposit 3.02 spreadsheet file,
+#' in the worksheet "Konzept Drainage". Although there are four groups of
+#' compounds ("Gefährdungsgruppen"), only one distinction is made in the
+#' calculations, between compounds with low mobility (group 1) and compounds
+#' with modest to high mobility (groups 2, 3 and 4). In this implementation,
+#' the group is derived only from the Koc, if not given explicitly. For
+#' details, see the discussion of the function arguments below.
+#'
+#' @param rate The application rate in g/ha
+#' @param interception The fraction intercepted by the crop
+#' @param Koc The sorption coefficient to soil organic carbon used to determine the mobility. A trigger
+#' value of 550 L/kg is used in order to decide if Koc >> 500.
+#' @param mobility Overrides what is determined from the Koc.
+#' @param DT50 The soil half-life in days
+#' @param t_drainage The time between application and the drainage event, where degradation occurs, in days
+#' @param V_ditch The volume of the ditch is assumed to be 1 m * 100 m * 30 cm = 30 m3
+#' @param V_drainage The drainage volume, equivalent to 1 mm precipitation on 1 ha for spring/summer or 10 mm for
+#' autumn/winter/early spring.
+#' @param dilution The dilution factor
+#' @return A list containing the following components
+#' \describe{
+#' \item{perc_drainage_total}{Gesamtaustrag (total fraction of the residue drained)}
+#' \item{perc_peak}{Stoßbelastung (fraction drained at event)}
+#' \item{PEC_sw_drainage}{A matrix containing PEC values for the spring and autumn
+#' scenarios. If the rate was given in g/ha, the PECsw are in microg/L.}
+#' }
+#' @export
+#' @source Excel 3.02 spreadsheet available from
+#' \url{https://www.bvl.bund.de/SharedDocs/Downloads/04_Pflanzenschutzmittel/zul_umwelt_exposit.html}
+#' @seealso \code{\link{perc_runoff_exposit}} for runoff loss percentages and \code{\link{perc_runoff_reduction_exposit}} for runoff reduction percentages used
+#' @examples
+#' PEC_sw_exposit_drainage(500, Koc = 150)
+PEC_sw_exposit_drainage <- function(rate, interception = 0, Koc = NA, mobility = c(NA, "low", "high"), DT50 = Inf, t_drainage = 3,
+ V_ditch = 30, V_drainage = c(spring = 10, autumn = 100), dilution = 2)
+{
+ # Rückstand zum Zeitpunkt des Niederschlagsereignisses (residue at the time of the drainage event)
+ k_deg <- log(2)/DT50
+ residue <- rate * (1 - interception) * 1 * exp(-k_deg * t_drainage) # assumes 1 ha treated area
+
+ mobility <- match.arg(mobility)
+ if (is.na(mobility)) {
+ if (is.na(Koc)) stop("Koc is needed if the mobility is not specified")
+ else {
+ if (Koc > 550) mobility = "low"
+ else mobility = "high"
+ }
+ }
+
+ V_ditch_drainage <- V_ditch + V_drainage
+ V_flowing_ditch_drainage <- dilution * V_ditch_drainage
+
+ # Gesamtaustrag (total fraction of the residue drained)
+ if (mobility == "low") {
+ f_drainage_total <- c(spring = 0.01 * 1e-2,
+ autumn = 0.05 * 1e-2)
+ } else {
+ f_drainage_total <- c(spring = 0.2 * 1e-2,
+ autumn = 1.0 * 1e-2)
+ }
+
+ f_peak = c(spring = 0.125, autumn = 0.25) # Stoßbelastung (fraction drained at event)
+
+ PEC_sw_drainage <- 1000 * residue * f_drainage_total * f_peak / V_flowing_ditch_drainage
+
+ result <- list(
+ perc_drainage_total = 100 * f_drainage_total,
+ perc_peak = 100 * f_peak,
+ PEC_sw_drainage = PEC_sw_drainage)
+ return(result)
+}

Contact - Imprint