diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2018-09-21 19:39:44 +0200 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2018-09-21 19:39:44 +0200 |
commit | ff7e67a4d3415419dd3f712ef1af7467ebf65508 (patch) | |
tree | 0d216deb410aca83eaadd1a7e676a8f765360084 /R | |
parent | 03c3035ca01c66b6a1352f7e509753fe2d057af2 (diff) |
Support FOMC in PEC_soil
Diffstat (limited to 'R')
-rw-r--r-- | R/PEC_soil.R | 74 |
1 files changed, 64 insertions, 10 deletions
diff --git a/R/PEC_soil.R b/R/PEC_soil.R index 1227f6a..513136e 100644 --- a/R/PEC_soil.R +++ b/R/PEC_soil.R @@ -43,7 +43,7 @@ if(getRversion() >= '2.15.1') utils::globalVariables(c("destination", "study_typ #' taken into account for the EFSA 2017 scenarios, using the evaluation depth #' (here mixing depth) as the depth of the layer from which leaching takes #' place. However, as the amount leaching below the evaluation depth -#' (often 5 cm) will partly be mixed back during tillage, the default in this function +#' (often 5 cm) will partly be mixed back during tillage, the default in this function #' is to use the tillage depth for the calculation of the leaching rate. #' @note If temperature information is available in the selected scenarios, as #' e.g. in the EFSA scenarios, the DT50 for groundwater modelling @@ -54,15 +54,16 @@ if(getRversion() >= '2.15.1') utils::globalVariables(c("destination", "study_typ #' @param rate_units Defaults to g/ha #' @param interception The fraction of the application rate that does not reach the soil #' @param mixing_depth Mixing depth in cm -#' @param interval Period of the deeper mixing, defaults to 365, which is a year if -#' degradation rate units are in days +#' @param interval Period of the deeper mixing. The default is NA, i.e. no +#' deeper mixing. For annual deeper mixing, set this to 365 when degradation +#' units are in days #' @param n_periods Number of periods to be considered for long term PEC calculations #' @param PEC_units Requested units for the calculated PEC. Only mg/kg currently supported #' @param PEC_pw_units Only mg/L currently supported #' @param tillage_depth Periodic (see interval) deeper mixing in cm #' @param leaching_depth EFSA (2017) uses the mixing depth (ecotoxicological #' evaluation depth) to calculate leaching for annual crops where tillage -#' takes place. By default, losses from the layer down to the tillage +#' takes place. By default, losses from the layer down to the tillage #' depth are taken into account in this implementation. #' @param cultivation Does mechanical cultivation in the sense of EFSA (2017) #' take place, i.e. twice a year to a depth of 5 cm? Ignored for scenarios @@ -75,6 +76,10 @@ if(getRversion() >= '2.15.1') utils::globalVariables(c("destination", "study_typ #' @param DT50 If specified, overrides soil DT50 endpoints from a chent object #' If DT50 is not specified here and not available from the chent object, zero #' degradation is assumed +#' @param FOMC If specified, it should be a named numeric vector containing +#' the FOMC parameters alpha and beta. This overrides any other degradation +#' endpoints, and the degradation during the interval and after the maximum PEC +#' is calculated using these parameters without temperature correction #' @param Koc If specified, overrides Koc endpoints from a chent object #' @param Kom Calculated from Koc by default, but can explicitly be specified #' as Kom here @@ -116,7 +121,7 @@ if(getRversion() >= '2.15.1') utils::globalVariables(c("destination", "study_typ #' @export #' @examples #' PEC_soil(100, interception = 0.25) -#' +#' #' # This is example 1 starting at p. 92 of the EFSA guidance (2017) #' # Note that TWA concentrations differ from the ones given in the guidance #' # for an unknown reason (the values from EFSA (2015) can be reproduced). @@ -150,6 +155,7 @@ PEC_soil <- function(rate, rate_units = "g/ha", interception = 0, cultivation = FALSE, chent = NA, DT50 = NA, + FOMC = NA, Koc = NA, Kom = Koc / 1.724, t_avg = 0, scenarios = c("default", "EFSA_2017", "EFSA_2015"), @@ -212,7 +218,7 @@ PEC_soil <- function(rate, rate_units = "g/ha", interception = 0, } else { stop("Depths other than 5 and 20 cm are not supported when using EFSA 2017 scenarios for permanent crops") } - } + } # For the loss via leaching, the equilibrium and therefore the f_om at the # bottom of the layer is probably most relevant. Unfortunately this is not @@ -225,7 +231,7 @@ PEC_soil <- function(rate, rate_units = "g/ha", interception = 0, f_f_om <- subset(f_f_om_depth, bottom == bottom_depth)$f_f_om_no_cultivation } return(f_f_om) - } + } } else { f_f_om_average <- f_f_om_bottom <- function(depth, cultivation) 1 } @@ -292,10 +298,22 @@ PEC_soil <- function(rate, rate_units = "g/ha", interception = 0, f_accu = 0 if (!is.na(interval)) { if (n_periods == Inf) { - f_accu = X/(1 - X) # part of (A2) + if (!is.na(FOMC[1])) { + f_accu = get_vertex(x = 8:10, y = PEC_FOMC_accu_rel(n = 10, interval, FOMC)[8:10])$yv + warning("The long term calculation is based on a pseudo-plateau constructed\n ", + "by fitting a parabola through the residues after 8, 9 and 10 years.\n ", + "This is the method used by the ESCAPE software tool.\n ", + "Please check the validity by specifying e.g. n_periods = 20 or 50.") + } else { + f_accu = X/(1 - X) # part of (A2) + } } else { for (i in 1:n_periods) { - f_accu = f_accu + X^i + if (!is.na(FOMC[1])) { + f_accu = f_accu + 1 / (((i * interval)/FOMC[["beta"]]) + 1)^FOMC[["alpha"]] + } else { + f_accu = f_accu + X^i + } } } } @@ -328,9 +346,45 @@ PEC_soil <- function(rate, rate_units = "g/ha", interception = 0, k_avg <- f_T * k_ref # Leaching not taken into account, EFSA 2017 p. 43 if (t_av_i > 0) { # Equation 10 from p. 24 (EFSA 2015) - result[i, ] <- PEC_soil_sce_mod/(t_av_i * k_avg) * (1 - exp(- k_avg * t_av_i)) # (A8) + if (!is.na(FOMC[1])) { + result[i, ] <- PEC_soil_sce_mod * (FOMC[["beta"]])/(t_av_i * (1 - FOMC[["alpha"]])) * + ((t_av_i/FOMC[["beta"]] + 1)^(1 - FOMC[["alpha"]]) - 1) + } else { + result[i, ] <- PEC_soil_sce_mod/(t_av_i * k_avg) * (1 - exp(- k_avg * t_av_i)) # (A8) + } } } return(result) } + +#' Get the relative accumulation of an FOMC model over multiples of an interval +#' @param n number of applications +#' @param interval Time between applications +#' @param FOMC Named numeric vector containing the FOMC parameters alpha and beta +#' @return A numeric vector containing all n accumulation factors for the n applications +#' @export +PEC_FOMC_accu_rel <- function(n, interval, FOMC) { + PEC_accu_rel <- 0 + for (i in 1:(n - 1)) { + PEC_accu_rel[i + 1] <- PEC_accu_rel[i] + mkin::FOMC.solution(i * interval, 1, + FOMC[["alpha"]], FOMC[["beta"]]) + } + return(PEC_accu_rel) +} + +#' Fit a parabola through three points +#' +#' This was inspired by an answer on stackoverflow +#' https://stackoverflow.com/a/717791 +get_vertex <- function(x, y) { + m <- cbind(x^2, x, 1) + m_inv <- solve(m) + res <- m_inv %*% y + A <- res[1] + B <- res[2] + C <- res[3] + xv = -B / (2*A) + yv = C - B**2 / (4*A) + return(list(xv = xv, yv = yv, A = A, B = B, C = C)) +} |