diff options
-rw-r--r-- | DESCRIPTION | 2 | ||||
-rw-r--r-- | man/FOCUS_GW_scenarios_2012.Rd | 1 | ||||
-rw-r--r-- | man/GUS.Rd | 9 | ||||
-rw-r--r-- | man/PEC_soil.Rd | 7 | ||||
-rw-r--r-- | man/PEC_sw_drainage_UK.Rd | 1 | ||||
-rw-r--r-- | man/PEC_sw_drift.Rd | 3 | ||||
-rw-r--r-- | man/PEC_sw_sed.Rd | 3 | ||||
-rw-r--r-- | man/SFO_actual_twa.Rd | 1 | ||||
-rw-r--r-- | man/SSLRC_mobility_classification.Rd | 1 | ||||
-rw-r--r-- | man/TOXSWA_cwa.Rd | 3 | ||||
-rw-r--r-- | man/drift_data_JKI.Rd | 1 | ||||
-rw-r--r-- | man/endpoint.Rd | 1 | ||||
-rw-r--r-- | man/geomean.Rd | 1 | ||||
-rw-r--r-- | man/pfm_degradation.Rd | 1 | ||||
-rw-r--r-- | man/plot.TOXSWA_cwa.Rd | 1 | ||||
-rw-r--r-- | man/read.TOXSWA_cwa.Rd | 1 | ||||
-rw-r--r-- | man/soil_scenario_data_EFSA_2015.Rd | 1 |
17 files changed, 12 insertions, 26 deletions
diff --git a/DESCRIPTION b/DESCRIPTION index cfef009..7207ca4 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -22,4 +22,4 @@ License: GPL LazyLoad: yes LazyData: yes Encoding: UTF-8 -RoxygenNote: 5.0.1 +RoxygenNote: 5.0.1.9000 diff --git a/man/FOCUS_GW_scenarios_2012.Rd b/man/FOCUS_GW_scenarios_2012.Rd index 3ae151b..f2417d9 100644 --- a/man/FOCUS_GW_scenarios_2012.Rd +++ b/man/FOCUS_GW_scenarios_2012.Rd @@ -14,4 +14,3 @@ FOCUS (2012) Generic guidance for Tier 1 FOCUS ground water assessments. Version FOrum for the Co-ordination of pesticde fate models and their USe. http://focus.jrc.ec.europa.eu/gw/docs/Generic_guidance_FOCV2_1.pdf } - @@ -2,8 +2,8 @@ % Please edit documentation in R/GUS.R \name{GUS} \alias{GUS} -\alias{GUS.chent} \alias{GUS.numeric} +\alias{GUS.chent} \alias{print.GUS_result} \title{Groundwater ubiquity score based on Gustafson (1989)} \usage{ @@ -70,12 +70,11 @@ The groundwater ubiquity score GUS is calculated according to the following equation \deqn{GUS = \log_{10} DT50_{soil} (4 - \log_{10} K_{oc})}{GUS = log10 DT50soil * (4 - log10 Koc)} } -\author{ -Johannes Ranke -} \references{ Gustafson, David I. (1989) Groundwater ubiquity score: a simple method for assessing pesticide leachability. \emph{Environmental toxicology and chemistry} \bold{8}(4) 339–57. } - +\author{ +Johannes Ranke +} diff --git a/man/PEC_soil.Rd b/man/PEC_soil.Rd index c0b5201..dd780cf 100644 --- a/man/PEC_soil.Rd +++ b/man/PEC_soil.Rd @@ -100,9 +100,6 @@ results_pfm <- PEC_soil(100/300 * 0.7 * 1 * 1000, interval = 365, DT50 = 250, t_ results_pfm_pw <- PEC_soil(100/300 * 0.7 * 1000, interval = 365, DT50 = 250, t_av = c(0, 21), Kom = 100, scenarios = "EFSA_2015", porewater = TRUE) } -\author{ -Johannes Ranke -} \references{ EFSA Panel on Plant Protection Products and their Residues (2012) Scientific Opinion on the science behind the guidance for scenario @@ -116,4 +113,6 @@ EFSA Panel on Plant Protection Products and their Residues (2012) in soil. \emph{EFSA Journal} \bold{13}(4) 4093 doi:10.2903/j.efsa.2015.4093 } - +\author{ +Johannes Ranke +} diff --git a/man/PEC_sw_drainage_UK.Rd b/man/PEC_sw_drainage_UK.Rd index cb64bde..a968b94 100644 --- a/man/PEC_sw_drainage_UK.Rd +++ b/man/PEC_sw_drainage_UK.Rd @@ -36,4 +36,3 @@ PEC_sw_drainage_UK(150, Koc = 100) \author{ Johannes Ranke } - diff --git a/man/PEC_sw_drift.Rd b/man/PEC_sw_drift.Rd index ae27e82..f74cf67 100644 --- a/man/PEC_sw_drift.Rd +++ b/man/PEC_sw_drift.Rd @@ -6,7 +6,7 @@ \usage{ PEC_sw_drift(rate, applications = 1, water_depth = 30, drift_percentages = NULL, drift_data = "JKI", crop = "Ackerbau", - distances = c(1, 5, 10, 20), rate_units = "g/ha", PEC_units = "<U+00B5>g/L") + distances = c(1, 5, 10, 20), rate_units = "g/ha", PEC_units = "µg/L") } \arguments{ \item{rate}{Application rate in units specified below} @@ -42,4 +42,3 @@ PEC_sw_drift(100) \author{ Johannes Ranke } - diff --git a/man/PEC_sw_sed.Rd b/man/PEC_sw_sed.Rd index d0e2ec6..1feb146 100644 --- a/man/PEC_sw_sed.Rd +++ b/man/PEC_sw_sed.Rd @@ -7,7 +7,7 @@ water concentrations} \usage{ PEC_sw_sed(PEC_sw, percentage = 100, method = "percentage", sediment_depth = 5, water_depth = 30, sediment_density = 1.3, - PEC_sed_units = c("<U+00B5>g/kg", "mg/kg")) + PEC_sed_units = c("µg/kg", "mg/kg")) } \arguments{ \item{PEC_sw}{Numeric vector or matrix of surface water concentrations in µg/L for @@ -39,4 +39,3 @@ PEC_sw_sed(PEC_sw_drift(100, distances = 1), percentage = 50) \author{ Johannes Ranke } - diff --git a/man/SFO_actual_twa.Rd b/man/SFO_actual_twa.Rd index 573ea03..61f95aa 100644 --- a/man/SFO_actual_twa.Rd +++ b/man/SFO_actual_twa.Rd @@ -26,4 +26,3 @@ SFO_actual_twa(10) \author{ Johannes Ranke } - diff --git a/man/SSLRC_mobility_classification.Rd b/man/SSLRC_mobility_classification.Rd index 04aa01d..c7fd12d 100644 --- a/man/SSLRC_mobility_classification.Rd +++ b/man/SSLRC_mobility_classification.Rd @@ -23,4 +23,3 @@ SSLRC_mobility_classification(100) \author{ Johannes Ranke } - diff --git a/man/TOXSWA_cwa.Rd b/man/TOXSWA_cwa.Rd index de87510..7935617 100644 --- a/man/TOXSWA_cwa.Rd +++ b/man/TOXSWA_cwa.Rd @@ -29,6 +29,7 @@ Usually, an instance of this class will be generated by \code{\link{read.TOXSWA_ and areas under the curve in µg/day * h (AUC_max_h) or µg/day * d (AUC_max_d) for the requested moving window sizes in days.} }} + \section{Methods}{ \describe{ @@ -45,6 +46,7 @@ for the requested moving window sizes in days.} } } } + \examples{ H_sw_R1_stream <- read.TOXSWA_cwa("00003s_pa.cwa", basedir = "SwashProjects/project_H_sw/TOXSWA", @@ -55,4 +57,3 @@ H_sw_R1_stream$moving_windows(c(7, 21)) print(H_sw_R1_stream) } \keyword{data} - diff --git a/man/drift_data_JKI.Rd b/man/drift_data_JKI.Rd index c193c0d..5597b66 100644 --- a/man/drift_data_JKI.Rd +++ b/man/drift_data_JKI.Rd @@ -47,4 +47,3 @@ as its licence is not clear. drift_data_JKI } \keyword{datasets} - diff --git a/man/endpoint.Rd b/man/endpoint.Rd index 0350a51..9511083 100644 --- a/man/endpoint.Rd +++ b/man/endpoint.Rd @@ -72,4 +72,3 @@ For the Freundlich exponent, the capital letter \code{N} is used in order to facilitate dealing with such data in R. In pesticide fate modelling, this exponent is often called 1/n. } - diff --git a/man/geomean.Rd b/man/geomean.Rd index ed82294..2887929 100644 --- a/man/geomean.Rd +++ b/man/geomean.Rd @@ -28,4 +28,3 @@ geomean(c(1, 3, NA, 9)) \author{ Johannes Ranke } - diff --git a/man/pfm_degradation.Rd b/man/pfm_degradation.Rd index 9ab1d0a..0f3cc79 100644 --- a/man/pfm_degradation.Rd +++ b/man/pfm_degradation.Rd @@ -32,4 +32,3 @@ head(pfm_degradation("SFO", DT50 = 10)) \author{ Johannes Ranke } - diff --git a/man/plot.TOXSWA_cwa.Rd b/man/plot.TOXSWA_cwa.Rd index b5f0163..4e81f91 100644 --- a/man/plot.TOXSWA_cwa.Rd +++ b/man/plot.TOXSWA_cwa.Rd @@ -39,4 +39,3 @@ plot(H_sw_D4_pond) \author{ Johannes Ranke } - diff --git a/man/read.TOXSWA_cwa.Rd b/man/read.TOXSWA_cwa.Rd index 84ef3da..f1d5908 100644 --- a/man/read.TOXSWA_cwa.Rd +++ b/man/read.TOXSWA_cwa.Rd @@ -53,4 +53,3 @@ H_sw_D4_pond <- read.TOXSWA_cwa("00001p_pa.cwa", \author{ Johannes Ranke } - diff --git a/man/soil_scenario_data_EFSA_2015.Rd b/man/soil_scenario_data_EFSA_2015.Rd index b45af4a..02c16dc 100644 --- a/man/soil_scenario_data_EFSA_2015.Rd +++ b/man/soil_scenario_data_EFSA_2015.Rd @@ -43,4 +43,3 @@ scenario and model adjustment factors from p. 15 and p. 17 are included. soil_scenario_data_EFSA_2015 } \keyword{datasets} - |