1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
|
utils::globalVariables(c("A", "B", "C", "D", "H", "hinge", "z1", "z2", "distance", "pctg", "width"))
#' Calculate predicted environmental concentrations in surface water due to drift
#'
#' This is a basic, vectorised form of a simple calculation of a contaminant
#' concentration in surface water based on complete, instantaneous mixing
#' with input via spray drift.
#'
#' It is recommened to specify the arguments `rate`, `water_depth` and
#' `water_width` using [units::units] from the `units` package.
#'
#' Since pfm version 0.6.5, the function is vectorised with respect to rates,
#' applications, water depth, crop groups and distances
#'
#' @inheritParams drift_percentages_rautmann
#' @importFrom testthat capture_output
#' @importFrom units as_units set_units
#' @seealso [drift_parameters_focus], [drift_percentages_rautmann]
#' @param rate Application rate in units specified below, or with units defined via the
#' `units` package.
#' @param rate_units Defaults to g/ha. For backwards compatibility, only used
#' if the specified rate does not have [units::units]].
#' @param drift_percentages Percentage drift values for which to calculate PECsw.
#' Overrides 'drift_data', 'distances', 'applications', crop group and
#' formula arguments if not NULL.
#' @param drift_data Source of drift percentage data. If 'JKI', the [drift_data_JKI]
#' included in the package is used. If 'RF', the Rautmann drift data are calculated
#' either in the original form or integrated over the width of the water body, depending
#' on the 'formula' argument.
#' @param crop_group_JKI When using the 'JKI' drift data, one of the German names
#' as used in [drift_data_JKI]. Will only be used if drift_data is 'JKI'. Available
#' crop groups are "Ackerbau", "Obstbau frueh", "Obstbau spaet",
#' "Weinbau frueh", "Weinbau spaet", "Hopfenbau", "Flaechenkulturen > 900 l/ha" and
#' "Gleisanlagen".
#' @param water_depth Depth of the water body in cm
#' @param PEC_units Requested units for the calculated PEC. Only µg/L currently supported
#' @param water_width Width of the water body in cm
#' @param side_angle The angle of the side of the water relative to the bottom which
#' is assumed to be horizontal, in degrees. The SYNOPS model assumes 45 degrees here.
#' @importFrom tibble as_tibble
#' @importFrom dplyr bind_rows
#' @importFrom tidyr pivot_longer
#' @return A numeric vector with the predicted concentration in surface water.
#' In some cases, the vector is named with distances or drift percentages, for
#' backward compatibility with versions before the vectorisation of arguments
#' other than 'distances' was introduced in v0.6.5.
#' @export
#' @author Johannes Ranke
#' @examples
#' PEC_sw_drift(100)
#' # Alternatively, we can use the formula for a single application to
#' # "Ackerbau" from the paper
#' PEC_sw_drift(100, drift_data = "RF")
#'
#' # This makes it possible to also use different distances
#' PEC_sw_drift(100, distances = c(1, 3, 5, 6, 10, 20, 50, 100), drift_data = "RF")
#'
#' # or consider aerial application
#' PEC_sw_drift(100, distances = c(1, 3, 5, 6, 10, 20, 50, 100), drift_data = "RF",
#' crop_group_RF = "aerial")
#'
#' # Using custom drift percentages is also supported
#' PEC_sw_drift(100, drift_percentages = c(2.77, 0.95, 0.57, 0.48, 0.29, 0.15, 0.06, 0.03))
#'
#' # The influence of assuming a 45° angle of the sides of the waterbody and the width of the
#' # waterbody can be illustrated
#' PEC_sw_drift(100)
#' PEC_sw_drift(100, drift_data = "RF")
#' PEC_sw_drift(100, drift_data = "RF", formula = "FOCUS")
#' PEC_sw_drift(100, drift_data = "RF", formula = "FOCUS", side_angle = 45)
#' PEC_sw_drift(100, drift_data = "RF", formula = "FOCUS", side_angle = 45, water_width = 200)
#'
#' # The function is vectorised with respect to rates, applications, water depth,
#' # crop groups and distances
#' PEC_sw_drift(
#' rate = rep(100, 6),
#' applications = c(1, 2, rep(1, 4)),
#' water_depth = c(30, 30, 30, 60, 30, 30),
#' crop_group_JKI = c(rep("Ackerbau", 4), rep("Obstbau frueh", 2)),
#' distances = c(rep(5, 4), 10, 5))
#'
#' # Try the same with the Rautmann formula
#' PEC_sw_drift(
#' rate = rep(100, 6),
#' applications = c(1, 2, rep(1, 4)),
#' water_depth = c(30, 30, 30, 60, 30, 30),
#' drift_data = "RF",
#' crop_group_RF = c(rep("arable", 4), rep("fruit, early", 2)),
#' distances = c(rep(5, 4), 10, 5))
#'
#' # And with the FOCUS variant
#' PEC_sw_drift(
#' rate = rep(100, 6),
#' applications = c(1, 2, rep(1, 4)),
#' water_depth = c(30, 30, 30, 60, 30, 30),
#' drift_data = "RF",
#' formula = "FOCUS",
#' crop_group_RF = c(rep("arable", 4), rep("fruit, early", 2)),
#' distances = c(rep(5, 4), 10, 5))
PEC_sw_drift <- function(rate,
applications = 1,
water_depth = as_units("30 cm"),
drift_percentages = NULL,
drift_data = c("JKI", "RF"),
crop_group_JKI = "Ackerbau",
crop_group_RF = "arable",
distances = c(1, 5, 10, 20),
formula = c("Rautmann", "FOCUS"),
water_width = as_units("100 cm"),
side_angle = 90,
rate_units = "g/ha",
PEC_units = "\u00B5g/L")
{
# Check arguments and set default units if not specified
rate_units <- match.arg(rate_units)
PEC_units <- match.arg(PEC_units)
if (!inherits(rate, "units")) rate <- set_units(rate, rate_units, mode = "symbolic")
if (!inherits(water_width, "units")) water_width <- set_units(water_width, "cm")
if (!inherits(water_depth, "units")) water_depth <- set_units(water_depth, "cm")
drift_data <- match.arg(drift_data)
unmatched_crop_groups_JKI <- setdiff(crop_group_JKI, colnames(pfm::drift_data_JKI[[1]]))
if (length(unmatched_crop_groups_JKI) > 0) {
stop("Crop group(s) ", paste(unmatched_crop_groups_JKI, collapse = ", "), " not supported")
}
unmatched_crop_groups_RF <- setdiff(crop_group_RF, unique(pfm::drift_parameters_focus$crop_group))
if (length(unmatched_crop_groups_RF) > 0) {
stop("Crop group(s) ", paste(unmatched_crop_groups_RF, collapse = ", "), "not supported")
}
if (drift_data == "JKI" & crop_group_RF[1] != "arable") {
stop("Specifying crop_group_RF only makes sense if 'RF' is used for 'drift_data'")
}
if (drift_data == "RF" & crop_group_JKI[1] != "Ackerbau") {
stop("Specifying crop_group_JKI only makes sense if 'JKI' is used for 'drift_data'")
}
formula <- match.arg(formula)
# Check waterbody arguments and calculate mean water width (absolute and relative to water width)
if (side_angle < 0 | side_angle > 90) stop("The side anglemust be between 0 and 90 degrees")
mean_water_width <- if (side_angle == 90) water_width # Mean water width over waterbody depth
else water_width - (water_depth / tanpi(side_angle/180))
if (as.numeric(mean_water_width) < 0) stop("Undefined geometry")
relative_mean_water_width <- mean_water_width / water_width # Always <= 1
# Check lengths of arguments advertised as vectorised for compatibility
arg_lengths <- sapply(
list(rate = rate, applications = applications, distances = distances,
water_depth = water_depth, crop_group_JKI = crop_group_JKI,
crop_group_RF = crop_group_RF),
length)
arg_lengths_not_one <- arg_lengths[arg_lengths != 1]
if (length(unique(arg_lengths_not_one)) > 1) {
stop("The following argument lengths do not match:\n",
capture_output(print(arg_lengths_not_one)))
}
# Base PEC sw drift for overspray
PEC_sw_overspray <- set_units(rate / (relative_mean_water_width * water_depth), PEC_units, mode = "symbolic")
if (is.null(drift_percentages)) {
if (drift_data == "JKI") {
drift_data_JKI_long <- pfm::drift_data_JKI |>
lapply(as_tibble, rownames = "distance") |>
bind_rows(.id = "applications") |>
pivot_longer(3:10, names_to = "crop_group_JKI", values_to = "pctg")
drift_percentages <- tibble(
applications = as.character(applications),
distance = as.character(distances), crop_group_JKI
) |>
left_join(drift_data_JKI_long, by = c("applications", "distance", "crop_group_JKI")) |>
pull(pctg)
names(drift_percentages) <- paste(distances, "m")
}
if (drift_data == "RF") {
drift_percentages <- drift_percentages_rautmann(distances, applications,
formula = formula,
crop_group_RF, widths = as.numeric(set_units(water_width, "m")))
names(drift_percentages) <- paste(distances, "m")
}
} else {
names(drift_percentages) <- paste(drift_percentages, "%")
}
PEC_sw_drift <- PEC_sw_overspray * drift_percentages / 100
return(PEC_sw_drift)
}
#' Calculate drift percentages based on Rautmann data
#'
#' @param formula By default, the original Rautmann formula is used. If you
#' specify "FOCUS", mean drift input over the width of the water body is
#' calculated as described in Chapter 5.4.5 of the FOCUS surface water guidance
#' @param distances The distances in m for which to get PEC values
#' @param widths The widths of the water bodies (only used in the FOCUS formula)
#' @param applications Number of applications for selection of drift percentile
#' @param crop_group_RF Crop group(s) as used in [drift_parameters_focus], i.e.
#' "arable", "hops", "vines, late", "vines, early", "fruit, late", "fruit, early"
#' or "aerial".
#' @importFrom tibble tibble
#' @importFrom dplyr if_else left_join mutate pull
#' @seealso [drift_parameters_focus], [PEC_sw_drift]
#' @references FOCUS (2014) Generic guidance for Surface Water Scenarios (version 1.4).
#' FOrum for the Co-ordination of pesticde fate models and their USe.
#' <http://esdac.jrc.ec.europa.eu/public_path/projects_data/focus/sw/docs/Generic%20FOCUS_SWS_vc1.4.pdf>
#' @export
#' @examples
#' # Compare JKI data with Rautmann and FOCUS formulas for arable crops (default)
#' # One application on field crops, for 1 m, 3 m and 5 m distance
#' drift_data_JKI[[1]][as.character(c(1, 3, 5)), "Ackerbau"]
#' drift_percentages_rautmann(c(1, 3, 5))
#' drift_percentages_rautmann(c(1, 3, 5), formula = "FOCUS")
#'
#' # Since pfm 0.6.5, the function can also take a vector of crop groups
#' drift_percentages_rautmann(
#' distances = c(1, 5, 5),
#' crop_group_RF = c("fruit, early", "fruit, early", "fruit, late"))
#'
#' # Two applications, all else equal
#' drift_data_JKI[[2]][as.character(c(1, 3, 5)), "Ackerbau"]
#' drift_percentages_rautmann(c(1, 3, 5), applications = 2)
#' drift_percentages_rautmann(c(1, 3, 5), formula = "FOCUS", app = 2)
#'
#' # One application to early or late fruit crops
#' drift_data_JKI[[1]][as.character(c(3, 5, 20, 50)), "Obstbau frueh"]
#' drift_percentages_rautmann(c(3, 5, 20, 50), crop_group_RF = "fruit, early")
#' drift_percentages_rautmann(c(3, 5, 20, 50), crop_group_RF = "fruit, early",
#' formula = "FOCUS")
#' drift_data_JKI[[1]][as.character(c(3, 5, 20, 50)), "Obstbau spaet"]
#' drift_percentages_rautmann(c(3, 5, 20, 50), crop_group_RF = "fruit, late")
#' drift_percentages_rautmann(c(3, 5, 20, 50), crop_group_RF = "fruit, late",
#' formula = "FOCUS")
#'
#' # We get a continuum if the waterbody covers the hinge distance
#' # (11.4 m for 1 early app to fruit)
#' x <- seq(3, 30, by = 0.1)
#' d <- drift_percentages_rautmann(x, crop_group_RF = "fruit, early", formula = "FOCUS")
#' plot(x, d, type = "l",
#' xlab = "Distance of near edge [m]",
#' ylab = "Mean drift percentage over waterbody width",
#' main = "One application to fruit, early")
#' abline(v = 11.4, lty = 2)
drift_percentages_rautmann <- function(distances, applications = 1,
crop_group_RF = "arable",
formula = c("Rautmann", "FOCUS"),
widths = 1
)
{
unmatched_crop_groups <- setdiff(crop_group_RF, unique(pfm::drift_parameters_focus$crop_group))
if (length(unmatched_crop_groups) > 0) stop("Crop group(s) ", unmatched_crop_groups, " not supported")
if (!all(applications %in% 1:8)) stop("Only 1 to 8 applications are supported")
formula <- match.arg(formula)
# To avoid recycling of components with length != 1 but smaller than the longest argument,
# which would likely be unintended, we use tibble here
parms <- tibble(distance = distances, width = widths, n_apps = applications, crop_group = crop_group_RF) |>
left_join(pfm::drift_parameters_focus, by = c("n_apps", "crop_group"))
if (formula[1] == "Rautmann") {
drift_percentages <- parms |>
mutate(
A = if_else(distance < hinge, A, C),
B = if_else(distance < hinge, B, D)) |>
mutate(
pctg = A * distances^B) |>
pull(pctg)
} else {
drift_percentages <- parms |>
mutate(
z1 = distance,
z2 = distance + width,
H = hinge) |>
mutate(
pctg = if_else(z2 < hinge,
# farther edge closer than hinge distance
A/(width * (B + 1)) * (z2^(B + 1) - z1^(B + 1)),
if_else(z1 < hinge,
# hinge distance in waterbody (between z1 and z2)
(A/(B + 1) * (H^(B + 1) - z1^(B + 1)) + C/(D + 1) * (z2^(D + 1) - H^(D + 1)))/width,
# z1 >= hinge, i.e. near edge farther than hinge distance
C/(width * (D + 1)) * (z2^(D + 1) - z1^(D + 1)))
)) |>
pull(pctg)
}
return(drift_percentages)
}
|