1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
|
# Copyright (C) 2016,2017 Johannes Ranke
# Contact: jranke@uni-bremen.de
# This file is part of the R package pfm
# This program is free software: you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free Software
# Foundation, either version 3 of the License, or (at your option) any later
# version.
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <http://www.gnu.org/licenses/>
#' Create a time series of decline data
#'
#' @param x When numeric, this is the half-life to be used for an exponential
#' decline. When a character string specifying a parent decline model is given
#' e.g. \code{FOMC}, \code{parms} must contain the corresponding paramters.
#' If x is an \code{\link{mkinfit}} object, the decline is calculated from this
#' object.
#' @param ini The initial amount. If x is an \code{\link{mkinfit}} object, and
#' ini is 'model', the fitted initial concentrations are used. Otherwise, ini
#' must be numeric. If it has length one, it is used for the parent and
#' initial values of metabolites are zero, otherwise, it must give values for
#' all observed variables.
#' @param t_end End of the time series
#' @param res Resolution of the time series
#' @param ... Further arguments passed to methods
#' @return An object of class \code{one_box}, inheriting from \code{\link{ts}}.
#' @importFrom stats filter frequency time ts
#' @export
#' @examples
#' # Only use a half-life
#' pred_0 <- one_box(10)
#' plot(pred_0)
#'
#' # Use a fitted mkinfit model
#' require(mkin)
#' fit <- mkinfit("FOMC", FOCUS_2006_C, quiet = TRUE)
#' pred_1 <- one_box(fit)
#' plot(pred_1)
#'
#' # Use a model with more than one observed variable
#' m_2 <- mkinmod(parent = mkinsub("SFO", "m1"), m1 = mkinsub("SFO"))
#' fit_2 <- mkinfit(m_2, FOCUS_2006_D, quiet = TRUE)
#' pred_2 <- one_box(fit_2, ini = "model")
#' plot(pred_2)
one_box <- function(x, ini, ...,
t_end = 100, res = 0.01)
{
UseMethod("one_box")
}
#' @rdname one_box
#' @export
one_box.numeric <- function(x, ini = 1, ...,
t_end = 100, res = 0.01)
{
half_life = x
k = log(2)/half_life
t_out <- seq(0, t_end, by = res)
raw <- matrix(ini * exp( - k * t_out), ncol = 1)
dimnames(raw) <- list(NULL, "parent")
result <- ts(raw, 0, t_end, frequency = 1/res)
class(result) <- c("one_box", "ts")
return(result)
}
#' @rdname one_box
#' @param parms A named numeric vector containing the model parameters
#' @export
one_box.character <- function(x, ini = 1, parms, ...,
t_end = 100, res = 0.01)
{
parent_models_available = c("SFO", "FOMC", "DFOP", "HS", "SFORB", "IORE")
if (length(x) == 1 & x %in% parent_models_available) {
m <- mkinmod(parent = mkinsub(x))
} else {
stop("If you specify the decline model using a character string, ",
"x has to be one of\n ",
paste(parent_models_available, collapse = ", "))
}
if (!setequal(names(parms), m$par)) {
stop("Please supply the parameters\n",
paste(m$par, collapse = ", "))
}
t_out <- seq(0, t_end, by = res)
pred <- mkinpredict(m, odeparms = parms, odeini = c(parent = ini),
outtimes = t_out, solution_type = "analytical")[-1]
result <- ts(pred, 0, t_end, frequency = 1/res)
class(result) <- c("one_box", "ts")
return(result)
}
#' @rdname one_box
#' @importFrom mkin mkinpredict
#' @export
one_box.mkinfit <- function(x, ini = "model", ..., t_end = 100, res = 0.01) {
fit <- x
if (ini[1] == "model") {
odeini = x$bparms.state
} else {
if (!is.numeric(ini[1])) stop ("Argument ini can only be 'model' or numeric")
if (length(ini) == 1) odeini <- c(ini[1], rep(0, length(fit$mkinmod$spec) - 1))
else odeini = ini
names(odeini) <- names(fit$mkinmod$spec)
}
t_out = seq(0, t_end, by = res)
if (length(fit$mkinmod$spec) == 1) solution_type = "analytical"
else solution_type = "deSolve"
tmp <- mkinpredict(fit$mkinmod, odeparms = fit$bparms.ode, odeini = odeini,
outtimes = t_out, solution_type = solution_type)[-1]
result <- ts(tmp, 0, t_end, frequency = 1/res)
class(result) <- c("one_box", "ts")
return(result)
}
#' Plot time series of decline data
#'
#' @param x The object of type \code{\link{one_box}} to be plotted
#' @param xlim Limits for the x axis
#' @param ylim Limits for the y axis
#' @param xlab Label for the x axis
#' @param ylab Label for the y axis
#' @param max_twa If a numeric value is given, the maximum time weighted
#' average concentration(s) is/are shown in the graph.
#' @param max_twa_var Variable for which the maximum time weighted average should
#' be shown if max_twa is not NULL.
#' @param ... Further arguments passed to methods
#' @importFrom stats plot.ts
#' @seealso \code{\link{sawtooth}}
#' @export
#' @examples
#' dfop_pred <- one_box("DFOP", parms = c(k1 = 0.2, k2 = 0.02, g = 0.7))
#' plot(dfop_pred)
#' plot(sawtooth(dfop_pred, 3, 7), max_twa = 21)
#'
#' # Use a fitted mkinfit model
#' m_2 <- mkinmod(parent = mkinsub("SFO", "m1"), m1 = mkinsub("SFO"))
#' fit_2 <- mkinfit(m_2, FOCUS_2006_D, quiet = TRUE)
#' pred_2 <- one_box(fit_2, ini = 1)
#' pred_2_saw <- sawtooth(pred_2, 2, 7)
#' plot(pred_2_saw, max_twa = 21, max_twa_var = "m1")
plot.one_box <- function(x,
xlim = range(time(x)), ylim = c(0, max(x)),
xlab = "Time", ylab = "Residue",
max_twa = NULL, max_twa_var = dimnames(x)[[2]][1], ...)
{
obs_vars <- dimnames(x)[[2]]
plot.ts(x, plot.type = "single", xlab = xlab, ylab = ylab,
lty = 1:length(obs_vars), col = 1:length(obs_vars),
las = 1, xlim = xlim, ylim = ylim)
if (!is.null(max_twa)) {
x_twa <- max_twa(x, window = max_twa)
value <- x_twa$max[max_twa_var]
rect(x_twa$window_start[max_twa_var], 0,
x_twa$window_end[max_twa_var], value, col = "grey")
text(x_twa$window_end[max_twa_var], value, paste("Maximum:", signif(value, 3)), pos = 4)
# Plot a second time to cover the grey rectangle
matlines(time(x), as.matrix(x), lty = 1:length(obs_vars), col = 1:length(obs_vars))
}
}
#' Create decline time series for multiple applications
#'
#' If the number of application cycles \code{n} is greater than 1, the
#' application pattern specified in \code{applications} is repeated \code{n}
#' times, with an interval \code{i}.
#' @param x A \code{\link{one_box}} object
#' @param n The number of applications. If \code{applications} is specified, \code{n} is ignored
#' @param i The interval between applications. If \code{applications} is specified, \code{i}
#' is ignored
#' @param applications A data frame holding the application times in the first column and
#' the corresponding amounts applied in the second column.
#' @export
#' @examples
#' applications = data.frame(time = seq(0, 14, by = 7), amount = c(1, 2, 3))
#' pred <- one_box(10)
#' plot(sawtooth(pred, applications = applications))
#'
#' m_2 <- mkinmod(parent = mkinsub("SFO", "m1"), m1 = mkinsub("SFO"))
#' fit_2 <- mkinfit(m_2, FOCUS_2006_D, quiet = TRUE)
#' pred_2 <- one_box(fit_2, ini = 1)
#' pred_2_saw <- sawtooth(pred_2, 2, 7)
#' plot(pred_2_saw, max_twa = 21, max_twa_var = "m1")
#'
#' max_twa(pred_2_saw)
sawtooth <- function(x, n = 1, i = 365,
applications = data.frame(time = seq(0, 0 + n * i, length.out = n),
amount = 1))
{
n_obs = ncol(as.matrix(x))
t_end = max(time(x))
freq = frequency(x)
empty <- ts(matrix(0, nrow = t_end * freq, ncol = n_obs), 0, t_end, freq)
result <- empty
for (i_app in 1:nrow(applications)) {
t_app <- applications[i_app, "time"]
amount_app <- applications[i_app, "amount"]
if (t_app == 0) {
result <- result + x * amount_app
} else {
lag_phase <- as.matrix(empty)[1:(t_app * freq), , drop = FALSE]
app_phase <- amount_app * as.matrix(x)[1:((t_end - t_app) * freq + 1), , drop = FALSE]
app_ts <- ts(rbind(lag_phase, app_phase), 0, t_end, frequency = freq)
result <- result + app_ts
}
}
class(result) = c("one_box", "ts")
dimnames(result) <- dimnames(x)
return(result)
}
#' Calculate a time weighted average concentration
#'
#' The moving average is built only using the values in the past, so
#' the earliest possible time for the maximum in the time series returned
#' is after one window has passed.
#'
#' @param x An object of type \code{\link{one_box}}
#' @param window The size of the moving window
#' @seealso \code{\link{max_twa}}
#' @importFrom stats start end
#' @export
#' @examples
#' pred <- sawtooth(one_box(10),
#' applications = data.frame(time = c(0, 7), amount = c(1, 1)))
#' max_twa(pred)
twa <- function(x, window = 21) UseMethod("twa")
#' @rdname twa
#' @export
twa.one_box <- function(x, window = 21)
{
length_ts <- end(x) - start(x)
if (window >= length_ts[1]) {
stop("The window must be smaller than the length of the time series")
}
resolution = 1/frequency(x)
n_filter = window/resolution
result = filter(x, rep(1/n_filter, n_filter), method = "convolution", sides = 1)
class(result) = c("one_box", "ts")
dimnames(result) <- dimnames(x)
return(result)
}
#' The maximum time weighted average concentration for a moving window
#'
#' If you generate your time series using \code{\link{sawtooth}},
#' you need to make sure that the length of the time series allows
#' for finding the maximum. It is therefore recommended to check this using
#' \code{\link{plot.one_box}} using the window size for the argument
#' \code{max_twa}.
#'
#' The method working directly on fitted \code{\link{mkinfit}} objects uses the
#' equations given in the PEC soil section of the FOCUS guidance and is restricted
#' SFO, FOMC and DFOP models and to the parent compound
#' @references FOCUS (2006) \dQuote{Guidance Document on Estimating Persistence and
#' Degradation Kinetics from Environmental Fate Studies on Pesticides in EU
#' Registration} Report of the FOCUS Work Group on Degradation Kinetics,
#' EC Document Reference Sanco/10058/2005 version 2.0, 434 pp,
#' \url{http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics}
#' @seealso \code{\link{twa}}
#' @inheritParams twa
#' @export
#' @examples
#' pred <- sawtooth(one_box(10),
#' applications = data.frame(time = c(0, 7), amount = c(1, 1)))
#' max_twa(pred)
#' pred_FOMC <- mkinfit("FOMC", FOCUS_2006_C, quiet = TRUE)
#' max_twa(pred_FOMC)
max_twa <- function(x, window = 21) UseMethod("max_twa")
#' @export
max_twa.mkinfit <- function(x, window = 21) {
fit <- x
parms.all <- c(fit$bparms.optim, fit$bparms.fixed)
obs_vars <- fit$obs_vars
if (length(obs_vars) > 1) {
warning("Calculation of maximum time weighted average concentrations is",
"currently only implemented for the parent compound using",
"analytical solutions")
}
obs_var <- obs_vars[1]
spec = fit$mkinmod$spec
type = spec[[1]]$type
M0 <- parms.all[paste0(obs_var, "_0")]
if (type == "SFO") {
k_name <- paste0("k_", obs_var)
if (fit$mkinmod$use_of_ff == "min") {
k_name <- paste0(k_name, "_sink")
}
k <- parms.all[k_name]
twafunc <- function(t) {
M0 * (1 - exp(- k * t)) / (k * t)
}
}
if (type == "FOMC") {
alpha <- parms.all["alpha"]
beta <- parms.all["beta"]
twafunc <- function(t) {
M0 * (beta)/(t * (1 - alpha)) * ((t/beta + 1)^(1 - alpha) - 1)
}
}
if (type == "DFOP") {
k1 <- parms.all["k1"]
k2 <- parms.all["k2"]
g <- parms.all["g"]
twafunc <- function(t) {
M0/t * ((g/k1) * (1 - exp(- k1 * t)) + ((1 - g)/k2) * (1 - exp(- k2 * t)))
}
}
if (type %in% c("HS", "IORE", "SFORB")) {
stop("Calculation of maximum time weighted average concentrations is currently ",
"not implemented for the ", type, " model.")
}
res <- twafunc(t = window)
names(res) <- window
return(res)
}
#' @export
max_twa.one_box <- function(x, window = 21)
{
freq = frequency(x)
twa_ts <- twa(x, window = window)
window_end <- apply(twa_ts, 2, which.max) / freq
result <- list()
result$max <- apply(twa_ts, 2, max, na.rm = TRUE)
result$window_start <- window_end - window
result$window_end <- window_end
return(result)
}
|