aboutsummaryrefslogtreecommitdiff
path: root/README.md
blob: cfec6d4abfee5ddf253765ee3c234cc94cacadf0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
# pfm

The R package **pfm** provides some utilities for dealing with FOCUS pesticide fate modelling tools,
(currently only TOXSWA cwa and out files), made available under the GNU public license.
This means:

    This program is free software: you can redistribute it and/or modify it under
    the terms of the GNU General Public License as published by the Free Software
    Foundation, either version 3 of the License, or (at your option) any later
    version.

    This program is distributed in the hope that it will be useful, but WITHOUT
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
    FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more
    details.

    You should have received a copy of the GNU General Public License along with
    this program. If not, see <http://www.gnu.org/licenses/>

## Installation

You can install the package from [github](http://github.com/jranke/pfm), e.g.
using the `devtools` package.  Using `quick = TRUE` skips docs,
multiple-architecture builds, demos, and vignettes, to make installation as
fast and painless as possible.


```r
library(devtools)
install_github("jranke/pfm", subdir = "pkg", quick = TRUE)
```

## Use

### Analyse TOXSWA output

Read in and analyse a cwa file:



```r
library(pfm, quietly = TRUE)
```

```
## 
## Initialize Python Version 2.7.9 (default, Jun 29 2016, 13:11:10) 
## [GCC 4.9.2]
```

```r
example_cwa <- read.TOXSWA_cwa("00003s_pa.cwa")
plot(example_cwa)
```

<img src="README_files/figure-html/unnamed-chunk-3-1.png" width="672" />

Get events above thresholds of 20 and 100 µg/L,
and do a moving window analysis for windows of 7 days
and 21 days, print the results:


```r
example_cwa$get_events(c(20, 100))
example_cwa$moving_windows(c(7, 21))
print(example_cwa)
```

```
## <TOXSWA_cwa> data from file 00003s_pa.cwa segment 20 
##                datetime     t t_firstjan t_rel_to_max cwa_mug_per_L
## 20  1978-10-01 00:00:00 0.000   273.0000      -55.333             0
## 40  1978-10-01 01:00:00 0.042   273.0417      -55.291             0
## 60  1978-10-01 02:00:00 0.083   273.0833      -55.250             0
## 80  1978-10-01 03:00:00 0.125   273.1250      -55.208             0
## 100 1978-10-01 04:00:00 0.167   273.1667      -55.166             0
## 120 1978-10-01 05:00:00 0.208   273.2083      -55.125             0
##     cwa_tot_mug_per_L
## 20                  0
## 40                  0
## 60                  0
## 80                  0
## 100                 0
## 120                 0
## Moving window analysis
##    window  max_TWAC max_AUC_h max_AUC_d
## 1  7 days 2.3926551  401.9660  16.74859
## 2 21 days 0.8369248  421.8101  17.57542
## Event statistics for threshold 20 
##   t_start  cwa_max duration pre_interval    AUC_h   AUC_d
## 1  55.083 40.58401    0.417       55.083 365.7912 15.2413
## Event statistics for threshold 100 
## No events found
```

This can also be done with out files, the function reads
out files from current TOXSWA versions as well as cwa files
from old TOXSWA versions.


### Calculate PEC soil

Simple PEC soil calculation for an application rate of 100 g/ha and
25% interception, assuming complete mixing into 5 cm and a soil bulk
density of 1.5 kg/L, output in mg/kg:



```r
PEC_soil(100, interception = 0.25)
```

```
##      scenario
## t_avg default
##     0     0.1
```

### Rautmann drift data

Some of the drift percentage data published by the JKI are included. To
see the data for one application:



```r
drift_data_JKI[1]
```

```
## [[1]]
##         crop
## distance Ackerbau Obstbau frueh Obstbau spaet
##       1      2.77            NA            NA
##       3        NA         29.20         15.73
##       5      0.57         19.89          8.41
##       10     0.29         11.81          3.60
##       15     0.20          5.55          1.81
##       20     0.15          2.77          1.09
##       30     0.10          1.04          0.54
##       40     0.07          0.52          0.32
##       50     0.06          0.30          0.22
```

### PEC surface water due to drift

Initial PEC values for an application of 100 g/ha in the vicinity of a 30 cm
deep water body are obtained using



```r
PEC_sw_drift(100, applications = 1)
```

```
##        1 m        5 m       10 m       20 m 
## 0.92333333 0.19000000 0.09666667 0.05000000
```

Contact - Imprint