aboutsummaryrefslogtreecommitdiff
path: root/man/soil_scenario_data_EFSA_2015.Rd
blob: dfad4aaaa4608639e239cf17e7e8613fb838e665 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/soil_scenario_data_EFSA_2015.R
\docType{data}
\name{soil_scenario_data_EFSA_2015}
\alias{soil_scenario_data_EFSA_2015}
\title{Properties of the predefined scenarios from the EFSA guidance from 2015}
\format{
A data frame with one row for each scenario. Row names are the scenario codes, 
  e.g. CTN for the Northern scenario for the total concentration in soil. Columns are 
  mostly self-explanatory. \code{rho} is the dry bulk density of the top soil.
}
\source{
EFSA (European Food Safety Authority) (2015)
  EFSA guidance document for predicting environmental concentrations
  of active substances of plant protection products and transformation products of these
  active substances in soil. \emph{EFSA Journal} \bold{13}(4) 4093
  doi:10.2903/j.efsa.2015.4093
}
\description{
Properties of the predefined scenarios used at Tier 1, Tier 2A and Tier 3A for the 
concentration in soil as given in the EFSA guidance (2015, p. 13/14). Also, the 
scenario and model adjustment factors from p. 15 and p. 17 are included.
}
\examples{
\dontrun{
  # This is the code that was used to define the data
  soil_scenario_data_EFSA_2015 <- data.frame(
    Zone = rep(c("North", "Central", "South"), 2),
    Country = c("Estonia", "Germany", "France", "Denmark", "Czech Republik", "Spain"),
    T_arit = c(4.7, 8.0, 11.0, 8.2, 9.1, 12.8),
    T_arr = c(7.0, 10.1, 12.3, 9.8, 11.2, 14.7),
    Texture = c("Coarse", "Coarse", "Medium fine", "Medium", "Medium", "Medium"),
    f_om = c(0.118, 0.086, 0.048, 0.023, 0.018, 0.011),
    theta_fc = c(0.244, 0.244, 0.385, 0.347, 0.347, 0.347),
    rho = c(0.95, 1.05, 1.22, 1.39, 1.43, 1.51),
    f_sce = c(3, 2, 2, 2, 1.5, 1.5),
    f_mod = c(2, 2, 2, 4, 4, 4),
    stringsAsFactors = FALSE,
    row.names = c("CTN", "CTC", "CTS", "CLN", "CLC", "CLS")
  )
  save(soil_scenario_data_EFSA_2015, file = '../data/soil_scenario_data_EFSA_2015.RData')
}

# And this is the resulting dataframe
soil_scenario_data_EFSA_2015
}
\keyword{datasets}

Contact - Imprint