diff options
author | Johannes Ranke <jranke@uni-bremen.de> | 2024-11-18 19:04:11 +0100 |
---|---|---|
committer | Johannes Ranke <jranke@uni-bremen.de> | 2024-11-18 19:04:11 +0100 |
commit | d36f7665da7ed855885bbbcd17b203d3e8804bab (patch) | |
tree | b0c94eb6b726ddea5340f1bf6669078122b8d187 /README.html | |
parent | 74077191e562b9b2692e8342f8d190ec0be4431f (diff) |
Update badges in README.rmd
Diffstat (limited to 'README.html')
-rw-r--r-- | README.html | 127 |
1 files changed, 53 insertions, 74 deletions
diff --git a/README.html b/README.html index 3d9793c..c4809fd 100644 --- a/README.html +++ b/README.html @@ -587,12 +587,12 @@ code .in { color: #008080; } </style> <style> body { -box-sizing: border-box; -min-width: 200px; -max-width: 980px; -margin: 0 auto; -padding: 45px; -padding-top: 0px; + box-sizing: border-box; + min-width: 200px; + max-width: 980px; + margin: 0 auto; + padding: 45px; + padding-top: 0px; } </style> @@ -607,28 +607,7 @@ padding-top: 0px; Calibration functions for analytical chemistry</h1> <!-- badges: start --> -<p><a href="https://cran.r-project.org/package=chemCal"><img src="data:image/svg+xml; charset=utf-8;base64,PHN2ZyB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMjAwMC9zdmciIHdpZHRoPSI4NSIgaGVpZ2h0PSIyMCIgYXJpYS1sYWJlbD0iQ1JBTiAwLjIuMyI+CiAgPGxpbmVhckdyYWRpZW50IGlkPSJiIiB4Mj0iMCIgeTI9IjEwMCUiPgogICAgPHN0b3Agb2Zmc2V0PSIwIiBzdG9wLWNvbG9yPSIjYmJiIiBzdG9wLW9wYWNpdHk9Ii4xIi8+CiAgICA8c3RvcCBvZmZzZXQ9IjEiIHN0b3Atb3BhY2l0eT0iLjEiLz4KICA8L2xpbmVhckdyYWRpZW50PgogIDxtYXNrIGlkPSJhIj4KICAgIDxyZWN0IHdpZHRoPSI4NSIgaGVpZ2h0PSIyMCIgcng9IjMiIGZpbGw9IiNmZmYiLz4KICA8L21hc2s+CiAgPGcgbWFzaz0idXJsKCNhKSI+CiAgICA8cGF0aCBmaWxsPSIjNTU1IiBkPSJNMCAwaDQzdjIwSDB6Ii8+CiAgICA8cGF0aCBmaWxsPSIjNGMxIiBkPSJNNDMgMGg2M3YyMEg0M3oiLz4KICAgIDxwYXRoIGZpbGw9InVybCgjYikiIGQ9Ik0wIDBoODV2MjBIMHoiLz4KICA8L2c+CiAgPGcgZmlsbD0iI2ZmZiIgdGV4dC1hbmNob3I9Im1pZGRsZSIKICAgICBmb250LWZhbWlseT0iRGVqYVZ1IFNhbnMsVmVyZGFuYSxHZW5ldmEsc2Fucy1zZXJpZiIgZm9udC1zaXplPSIxMSI+CiAgICA8dGV4dCB4PSIyMS41IiB5PSIxNSIgZmlsbD0iIzAxMDEwMSIgZmlsbC1vcGFjaXR5PSIuMyI+CiAgICAgIENSQU4KICAgIDwvdGV4dD4KICAgIDx0ZXh0IHg9IjIxLjUiIHk9IjE0Ij4KICAgICAgQ1JBTgogICAgPC90ZXh0PgogICAgPHRleHQgeD0iNjMiIHk9IjE1IiBmaWxsPSIjMDEwMTAxIiBmaWxsLW9wYWNpdHk9Ii4zIj4KICAgICAgMC4yLjMKICAgIDwvdGV4dD4KICAgIDx0ZXh0IHg9IjYzIiB5PSIxNCI+CiAgICAgIDAuMi4zCiAgICA8L3RleHQ+CiAgPC9nPgo8L3N2Zz4=" /></a> <a href="https://app.travis-ci.com/jranke/chemCal"><svg id="svg_6a7e16d9fbe5b315f689" alt="Build Status" width="90" height="20" viewBox="0 0 90 20"><linearGradient id="svg_6a7e16d9fbe5b315f689_a" x2="0" y2="100%"><stop offset="0" stop-color="#bbb" stop-opacity=".1"></stop><stop offset="1" stop-opacity=".1"></stop></linearGradient><rect rx="3" width="90" height="20" fill="#555" /><rect rx="3" x="37" width="53" height="20" fill="#4c1" /><path fill="#4c1" d="M37 0h4v20h-4z" /><rect rx="3" width="90" height="20" fill="url(#a)" /><g fill="#fff" text-anchor="middle" font-family="DejaVu Sans,Verdana,Geneva,sans-serif" font-size="11"><text x="19.5" y="15" fill="#010101" fill-opacity=".3">build</text><text x="19.5" y="14">build</text><text x="62.5" y="15" fill="#010101" fill-opacity=".3">passing</text><text x="62.5" y="14">passing</text></g></svg></a> <a href="https://codecov.io/github/jranke/chemCal"><svg id="svg_4d167aaf41558a03468c" alt="codecov" width="112" height="20" viewBox="0 0 112 20"> - <linearGradient id="svg_4d167aaf41558a03468c_b" x2="0" y2="100%"> - <stop offset="0" stop-color="#bbb" stop-opacity=".1"></stop> - <stop offset="1" stop-opacity=".1"></stop> - </linearGradient> - <mask id="svg_4d167aaf41558a03468c_a"> - <rect width="112" height="20" rx="3" fill="#fff" /> - </mask> - <g mask="url(#a)"> - <path fill="#555" d="M0 0h73v20H0z" /> - <path fill="#e05d44" d="M73 0h39v20H73z" /> - <path fill="url(#b)" d="M0 0h112v20H0z" /> - </g> - <g fill="#fff" text-anchor="middle" font-family="DejaVu Sans,Verdana,Geneva,sans-serif" font-size="11"> - <text x="46" y="15" fill="#010101" fill-opacity=".3">codecov</text> - <text x="46" y="14">codecov</text> - <text x="93" y="15" fill="#010101" fill-opacity=".3">53%</text> - <text x="93" y="14">53%</text> - </g> - <svg viewBox="120 -8 60 60"> - <path d="M23.013 0C10.333.009.01 10.22 0 22.762v.058l3.914 2.275.053-.036a11.291 11.291 0 0 1 8.352-1.767 10.911 10.911 0 0 1 5.5 2.726l.673.624.38-.828c.368-.802.793-1.556 1.264-2.24.19-.276.398-.554.637-.851l.393-.49-.484-.404a16.08 16.08 0 0 0-7.453-3.466 16.482 16.482 0 0 0-7.705.449C7.386 10.683 14.56 5.016 23.03 5.01c4.779 0 9.272 1.84 12.651 5.18 2.41 2.382 4.069 5.35 4.807 8.591a16.53 16.53 0 0 0-4.792-.723l-.292-.002a16.707 16.707 0 0 0-1.902.14l-.08.012c-.28.037-.524.074-.748.115-.11.019-.218.041-.327.063-.257.052-.51.108-.75.169l-.265.067a16.39 16.39 0 0 0-.926.276l-.056.018c-.682.23-1.36.511-2.016.838l-.052.026c-.29.145-.584.305-.899.49l-.069.04a15.596 15.596 0 0 0-4.061 3.466l-.145.175c-.29.36-.521.666-.723.96-.17.247-.34.513-.552.864l-.116.199c-.17.292-.32.57-.449.824l-.03.057a16.116 16.116 0 0 0-.843 2.029l-.034.102a15.65 15.65 0 0 0-.786 5.174l.003.214a21.523 21.523 0 0 0 .04.754c.009.119.02.237.032.355.014.145.032.29.049.432l.01.08c.01.067.017.133.026.197.034.242.074.48.119.72.463 2.419 1.62 4.836 3.345 6.99l.078.098.08-.095c.688-.81 2.395-3.38 2.539-4.922l.003-.029-.014-.025a10.727 10.727 0 0 1-1.226-4.956c0-5.76 4.545-10.544 10.343-10.89l.381-.014a11.403 11.403 0 0 1 6.651 1.957l.054.036 3.862-2.237.05-.03v-.056c.006-6.08-2.384-11.793-6.729-16.089C34.932 2.361 29.16 0 23.013 0" fill="#F01F7A" fill-rule="evenodd" /> - </svg></a></p> +<p><a href="https://cran.r-project.org/package=chemCal"><img src="data:image/svg+xml; charset=utf-8;base64,PHN2ZyB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMjAwMC9zdmciIHdpZHRoPSI4NSIgaGVpZ2h0PSIyMCIgYXJpYS1sYWJlbD0iQ1JBTiAwLjIuMyI+CiAgPGxpbmVhckdyYWRpZW50IGlkPSJiIiB4Mj0iMCIgeTI9IjEwMCUiPgogICAgPHN0b3Agb2Zmc2V0PSIwIiBzdG9wLWNvbG9yPSIjYmJiIiBzdG9wLW9wYWNpdHk9Ii4xIi8+CiAgICA8c3RvcCBvZmZzZXQ9IjEiIHN0b3Atb3BhY2l0eT0iLjEiLz4KICA8L2xpbmVhckdyYWRpZW50PgogIDxtYXNrIGlkPSJhIj4KICAgIDxyZWN0IHdpZHRoPSI4NSIgaGVpZ2h0PSIyMCIgcng9IjMiIGZpbGw9IiNmZmYiLz4KICA8L21hc2s+CiAgPGcgbWFzaz0idXJsKCNhKSI+CiAgICA8cGF0aCBmaWxsPSIjNTU1IiBkPSJNMCAwaDQzdjIwSDB6Ii8+CiAgICA8cGF0aCBmaWxsPSIjNGMxIiBkPSJNNDMgMGg2M3YyMEg0M3oiLz4KICAgIDxwYXRoIGZpbGw9InVybCgjYikiIGQ9Ik0wIDBoODV2MjBIMHoiLz4KICA8L2c+CiAgPGcgZmlsbD0iI2ZmZiIgdGV4dC1hbmNob3I9Im1pZGRsZSIKICAgICBmb250LWZhbWlseT0iRGVqYVZ1IFNhbnMsVmVyZGFuYSxHZW5ldmEsc2Fucy1zZXJpZiIgZm9udC1zaXplPSIxMSI+CiAgICA8dGV4dCB4PSIyMS41IiB5PSIxNSIgZmlsbD0iIzAxMDEwMSIgZmlsbC1vcGFjaXR5PSIuMyI+CiAgICAgIENSQU4KICAgIDwvdGV4dD4KICAgIDx0ZXh0IHg9IjIxLjUiIHk9IjE0Ij4KICAgICAgQ1JBTgogICAgPC90ZXh0PgogICAgPHRleHQgeD0iNjMiIHk9IjE1IiBmaWxsPSIjMDEwMTAxIiBmaWxsLW9wYWNpdHk9Ii4zIj4KICAgICAgMC4yLjMKICAgIDwvdGV4dD4KICAgIDx0ZXh0IHg9IjYzIiB5PSIxNCI+CiAgICAgIDAuMi4zCiAgICA8L3RleHQ+CiAgPC9nPgo8L3N2Zz4=" /></a> <a href="https://app.codecov.io/gh/jranke/chemCal"><img src="" alt="Codecov test coverage" /></a> <a href="https://github.com/jranke/chemCal/actions/workflows/R-CMD-check.yaml"><img src="data:image/svg+xml; charset=utf-8;base64,PHN2ZyB4bWxucz0iaHR0cDovL3d3dy53My5vcmcvMjAwMC9zdmciIHdpZHRoPSIxODIiIGhlaWdodD0iMjAiPgogIDx0aXRsZT5SLUNNRC1jaGVjay55YW1sIC0gcGFzc2luZzwvdGl0bGU+CiAgPGRlZnM+CiAgICA8bGluZWFyR3JhZGllbnQgaWQ9IndvcmtmbG93LWZpbGwiIHgxPSI1MCUiIHkxPSIwJSIgeDI9IjUwJSIgeTI9IjEwMCUiPgogICAgICA8c3RvcCBzdG9wLWNvbG9yPSIjNDQ0RDU2IiBvZmZzZXQ9IjAlIj48L3N0b3A+CiAgICAgIDxzdG9wIHN0b3AtY29sb3I9IiMyNDI5MkUiIG9mZnNldD0iMTAwJSI+PC9zdG9wPgogICAgPC9saW5lYXJHcmFkaWVudD4KICAgIDxsaW5lYXJHcmFkaWVudCBpZD0ic3RhdGUtZmlsbCIgeDE9IjUwJSIgeTE9IjAlIiB4Mj0iNTAlIiB5Mj0iMTAwJSI+CiAgICAgIDxzdG9wIHN0b3AtY29sb3I9IiMzNEQwNTgiIG9mZnNldD0iMCUiPjwvc3RvcD4KICAgICAgPHN0b3Agc3RvcC1jb2xvcj0iIzI4QTc0NSIgb2Zmc2V0PSIxMDAlIj48L3N0b3A+CiAgICA8L2xpbmVhckdyYWRpZW50PgogIDwvZGVmcz4KICA8ZyBmaWxsPSJub25lIiBmaWxsLXJ1bGU9ImV2ZW5vZGQiPgogICAgPGcgZm9udC1mYW1pbHk9IiYjMzk7RGVqYVZ1IFNhbnMmIzM5OyxWZXJkYW5hLEdlbmV2YSxzYW5zLXNlcmlmIiBmb250LXNpemU9IjExIj4KICAgICAgPHBhdGggaWQ9IndvcmtmbG93LWJnIiBkPSJNMCwzIEMwLDEuMzQzMSAxLjM1NTIsMCAzLjAyNzAyNzAzLDAgTDEzMiwwIEwxMzIsMjAgTDMuMDI3MDI3MDMsMjAgQzEuMzU1MiwyMCAwLDE4LjY1NjkgMCwxNyBMMCwzIFoiIGZpbGw9InVybCgjd29ya2Zsb3ctZmlsbCkiIGZpbGwtcnVsZT0ibm9uemVybyI+PC9wYXRoPgogICAgICA8dGV4dCBmaWxsPSIjMDEwMTAxIiBmaWxsLW9wYWNpdHk9Ii4zIj4KICAgICAgICA8dHNwYW4geD0iMjIuMTk4MTk4MiIgeT0iMTUiIGFyaWEtaGlkZGVuPSJ0cnVlIj5SLUNNRC1jaGVjay55YW1sPC90c3Bhbj4KICAgICAgPC90ZXh0PgogICAgICA8dGV4dCBmaWxsPSIjRkZGRkZGIj4KICAgICAgICA8dHNwYW4geD0iMjIuMTk4MTk4MiIgeT0iMTQiPlItQ01ELWNoZWNrLnlhbWw8L3RzcGFuPgogICAgICA8L3RleHQ+CiAgICA8L2c+CiAgICA8ZyB0cmFuc2Zvcm09InRyYW5zbGF0ZSgxMzIpIiBmb250LWZhbWlseT0iJiMzOTtEZWphVnUgU2FucyYjMzk7LFZlcmRhbmEsR2VuZXZhLHNhbnMtc2VyaWYiIGZvbnQtc2l6ZT0iMTEiPgogICAgICA8cGF0aCBkPSJNMCAwaDQ2LjkzOUM0OC42MjkgMCA1MCAxLjM0MyA1MCAzdjE0YzAgMS42NTctMS4zNyAzLTMuMDYxIDNIMFYweiIgaWQ9InN0YXRlLWJnIiBmaWxsPSJ1cmwoI3N0YXRlLWZpbGwpIiBmaWxsLXJ1bGU9Im5vbnplcm8iPjwvcGF0aD4KICAgICAgPHRleHQgZmlsbD0iIzAxMDEwMSIgZmlsbC1vcGFjaXR5PSIuMyIgYXJpYS1oaWRkZW49InRydWUiPgogICAgICAgIDx0c3BhbiB4PSI0IiB5PSIxNSI+cGFzc2luZzwvdHNwYW4+CiAgICAgIDwvdGV4dD4KICAgICAgPHRleHQgZmlsbD0iI0ZGRkZGRiI+CiAgICAgICAgPHRzcGFuIHg9IjQiIHk9IjE0Ij5wYXNzaW5nPC90c3Bhbj4KICAgICAgPC90ZXh0PgogICAgPC9nPgogICAgPHBhdGggZmlsbD0iIzk1OURBNSIgZD0iTTExIDNjLTMuODY4IDAtNyAzLjEzMi03IDdhNi45OTYgNi45OTYgMCAwIDAgNC43ODYgNi42NDFjLjM1LjA2Mi40ODItLjE0OC40ODItLjMzMiAwLS4xNjYtLjAxLS43MTgtLjAxLTEuMzA0LTEuNzU4LjMyNC0yLjIxMy0uNDI5LTIuMzUzLS44MjItLjA3OS0uMjAyLS40Mi0uODIzLS43MTctLjk5LS4yNDUtLjEzLS41OTUtLjQ1NC0uMDEtLjQ2My41NTItLjAwOS45NDYuNTA4IDEuMDc3LjcxOC42MyAxLjA1OCAxLjYzNi43NiAyLjAzOS41NzcuMDYxLS40NTUuMjQ1LS43NjEuNDQ2LS45MzYtMS41NTctLjE3NS0zLjE4NS0uNzc5LTMuMTg1LTMuNDU2IDAtLjc2Mi4yNzEtMS4zOTIuNzE4LTEuODgyLS4wNy0uMTc1LS4zMTUtLjg5Mi4wNy0xLjg1NSAwIDAgLjU4Ni0uMTgzIDEuOTI1LjcxOGE2LjUgNi41IDAgMCAxIDEuNzUtLjIzNiA2LjUgNi41IDAgMCAxIDEuNzUuMjM2YzEuMzM4LS45MSAxLjkyNS0uNzE4IDEuOTI1LS43MTguMzg1Ljk2My4xNCAxLjY4LjA3IDEuODU1LjQ0Ni40OS43MTcgMS4xMTIuNzE3IDEuODgyIDAgMi42ODYtMS42MzYgMy4yOC0zLjE5NCAzLjQ1Ni4yNTQuMjE5LjQ3My42MzkuNDczIDEuMjk1IDAgLjkzNi0uMDA5IDEuNjg5LS4wMDkgMS45MjUgMCAuMTg0LjEzMS40MDIuNDgxLjMzMkE3LjAxMSA3LjAxMSAwIDAgMCAxOCAxMGMwLTMuODY3LTMuMTMzLTctNy03eiI+PC9wYXRoPgogIDwvZz4KPC9zdmc+Cgo=" alt="R-CMD-check" /></a></p> <!-- badges: end --> <h2 id="overview">Overview</h2> @@ -638,25 +617,25 @@ variable.</p> <h2 id="installation">Installation</h2> <p>From within <a href="https://www.r-project.org/">R</a>, get the official chemCal release using</p> -<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" tabindex="-1"></a><span class="fu">install.packages</span>(<span class="st">"chemCal"</span>)</span></code></pre></div> +<div class="sourceCode" id="cb1"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">install.packages</span>(<span class="st">"chemCal"</span>)</span></code></pre></div> <h2 id="usage">Usage</h2> <p>chemCal works with univariate linear models of class <code>lm</code>. Working with one of the datasets coming with chemCal, we can produce a calibration plot using the <code>calplot</code> function:</p> <h3 id="plotting-a-calibration">Plotting a calibration</h3> -<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" tabindex="-1"></a><span class="fu">library</span>(chemCal)</span> -<span id="cb2-2"><a href="#cb2-2" tabindex="-1"></a>m0 <span class="ot"><-</span> <span class="fu">lm</span>(y <span class="sc">~</span> x, <span class="at">data =</span> massart97ex3)</span> -<span id="cb2-3"><a href="#cb2-3" tabindex="-1"></a><span class="fu">calplot</span>(m0)</span></code></pre></div> +<div class="sourceCode" id="cb2"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb2-1"><a href="#cb2-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(chemCal)</span> +<span id="cb2-2"><a href="#cb2-2" aria-hidden="true" tabindex="-1"></a>m0 <span class="ot"><-</span> <span class="fu">lm</span>(y <span class="sc">~</span> x, <span class="at">data =</span> massart97ex3)</span> +<span id="cb2-3"><a href="#cb2-3" aria-hidden="true" tabindex="-1"></a><span class="fu">calplot</span>(m0)</span></code></pre></div> <p><img src="" /><!-- --></p> <h3 id="lod-and-loq">LOD and LOQ</h3> <p>If you use unweighted regression, as in the above example, we can calculate a Limit Of Detection (LOD) from the calibration data.</p> -<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" tabindex="-1"></a><span class="fu">lod</span>(m0)</span> -<span id="cb3-2"><a href="#cb3-2" tabindex="-1"></a><span class="co">#> $x</span></span> -<span id="cb3-3"><a href="#cb3-3" tabindex="-1"></a><span class="co">#> [1] 5.407085</span></span> -<span id="cb3-4"><a href="#cb3-4" tabindex="-1"></a><span class="co">#> </span></span> -<span id="cb3-5"><a href="#cb3-5" tabindex="-1"></a><span class="co">#> $y</span></span> -<span id="cb3-6"><a href="#cb3-6" tabindex="-1"></a><span class="co">#> [1] 13.63911</span></span></code></pre></div> +<div class="sourceCode" id="cb3"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="fu">lod</span>(m0)</span> +<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a><span class="co">#> $x</span></span> +<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 5.407085</span></span> +<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a><span class="co">#> $y</span></span> +<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 13.63911</span></span></code></pre></div> <p>This is the minimum detectable value (German: Erfassungsgrenze), i.e. the value where the probability that the signal is not detected although the analyte is present is below a specified error tolerance @@ -665,53 +644,53 @@ beta (default is 0.05 following the IUPAC recommendation).</p> i.e. the value that is significantly different from the blank signal with an error tolerance alpha (default is 0.05, again following IUPAC recommendations) by setting beta to 0.5.</p> -<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" tabindex="-1"></a><span class="fu">lod</span>(m0, <span class="at">beta =</span> <span class="fl">0.5</span>)</span> -<span id="cb4-2"><a href="#cb4-2" tabindex="-1"></a><span class="co">#> $x</span></span> -<span id="cb4-3"><a href="#cb4-3" tabindex="-1"></a><span class="co">#> [1] 2.720388</span></span> -<span id="cb4-4"><a href="#cb4-4" tabindex="-1"></a><span class="co">#> </span></span> -<span id="cb4-5"><a href="#cb4-5" tabindex="-1"></a><span class="co">#> $y</span></span> -<span id="cb4-6"><a href="#cb4-6" tabindex="-1"></a><span class="co">#> [1] 8.314841</span></span></code></pre></div> +<div class="sourceCode" id="cb4"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a><span class="fu">lod</span>(m0, <span class="at">beta =</span> <span class="fl">0.5</span>)</span> +<span id="cb4-2"><a href="#cb4-2" aria-hidden="true" tabindex="-1"></a><span class="co">#> $x</span></span> +<span id="cb4-3"><a href="#cb4-3" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 2.720388</span></span> +<span id="cb4-4"><a href="#cb4-4" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb4-5"><a href="#cb4-5" aria-hidden="true" tabindex="-1"></a><span class="co">#> $y</span></span> +<span id="cb4-6"><a href="#cb4-6" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 8.314841</span></span></code></pre></div> <p>Furthermore, you can calculate the Limit Of Quantification (LOQ), being defined as the value where the relative error of the quantification given the calibration model reaches a prespecified value (default is 1/3).</p> -<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" tabindex="-1"></a><span class="fu">loq</span>(m0)</span> -<span id="cb5-2"><a href="#cb5-2" tabindex="-1"></a><span class="co">#> $x</span></span> -<span id="cb5-3"><a href="#cb5-3" tabindex="-1"></a><span class="co">#> [1] 9.627349</span></span> -<span id="cb5-4"><a href="#cb5-4" tabindex="-1"></a><span class="co">#> </span></span> -<span id="cb5-5"><a href="#cb5-5" tabindex="-1"></a><span class="co">#> $y</span></span> -<span id="cb5-6"><a href="#cb5-6" tabindex="-1"></a><span class="co">#> [1] 22.00246</span></span></code></pre></div> +<div class="sourceCode" id="cb5"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="fu">loq</span>(m0)</span> +<span id="cb5-2"><a href="#cb5-2" aria-hidden="true" tabindex="-1"></a><span class="co">#> $x</span></span> +<span id="cb5-3"><a href="#cb5-3" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 9.627349</span></span> +<span id="cb5-4"><a href="#cb5-4" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb5-5"><a href="#cb5-5" aria-hidden="true" tabindex="-1"></a><span class="co">#> $y</span></span> +<span id="cb5-6"><a href="#cb5-6" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 22.00246</span></span></code></pre></div> <h3 id="confidence-intervals-for-measured-values">Confidence intervals for measured values</h3> <p>Finally, you can get a confidence interval for the values measured using the calibration curve, i.e. for the inverse predictions using the function <code>inverse.predict</code>.</p> -<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" tabindex="-1"></a><span class="fu">inverse.predict</span>(m0, <span class="dv">90</span>)</span> -<span id="cb6-2"><a href="#cb6-2" tabindex="-1"></a><span class="co">#> $Prediction</span></span> -<span id="cb6-3"><a href="#cb6-3" tabindex="-1"></a><span class="co">#> [1] 43.93983</span></span> -<span id="cb6-4"><a href="#cb6-4" tabindex="-1"></a><span class="co">#> </span></span> -<span id="cb6-5"><a href="#cb6-5" tabindex="-1"></a><span class="co">#> $`Standard Error`</span></span> -<span id="cb6-6"><a href="#cb6-6" tabindex="-1"></a><span class="co">#> [1] 1.576985</span></span> -<span id="cb6-7"><a href="#cb6-7" tabindex="-1"></a><span class="co">#> </span></span> -<span id="cb6-8"><a href="#cb6-8" tabindex="-1"></a><span class="co">#> $Confidence</span></span> -<span id="cb6-9"><a href="#cb6-9" tabindex="-1"></a><span class="co">#> [1] 3.230307</span></span> -<span id="cb6-10"><a href="#cb6-10" tabindex="-1"></a><span class="co">#> </span></span> -<span id="cb6-11"><a href="#cb6-11" tabindex="-1"></a><span class="co">#> $`Confidence Limits`</span></span> -<span id="cb6-12"><a href="#cb6-12" tabindex="-1"></a><span class="co">#> [1] 40.70952 47.17014</span></span></code></pre></div> +<div class="sourceCode" id="cb6"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb6-1"><a href="#cb6-1" aria-hidden="true" tabindex="-1"></a><span class="fu">inverse.predict</span>(m0, <span class="dv">90</span>)</span> +<span id="cb6-2"><a href="#cb6-2" aria-hidden="true" tabindex="-1"></a><span class="co">#> $Prediction</span></span> +<span id="cb6-3"><a href="#cb6-3" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 43.93983</span></span> +<span id="cb6-4"><a href="#cb6-4" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb6-5"><a href="#cb6-5" aria-hidden="true" tabindex="-1"></a><span class="co">#> $`Standard Error`</span></span> +<span id="cb6-6"><a href="#cb6-6" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 1.576985</span></span> +<span id="cb6-7"><a href="#cb6-7" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb6-8"><a href="#cb6-8" aria-hidden="true" tabindex="-1"></a><span class="co">#> $Confidence</span></span> +<span id="cb6-9"><a href="#cb6-9" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 3.230307</span></span> +<span id="cb6-10"><a href="#cb6-10" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb6-11"><a href="#cb6-11" aria-hidden="true" tabindex="-1"></a><span class="co">#> $`Confidence Limits`</span></span> +<span id="cb6-12"><a href="#cb6-12" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 40.70952 47.17014</span></span></code></pre></div> <p>If you have replicate measurements of the same sample, you can also give a vector of numbers.</p> -<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" tabindex="-1"></a><span class="fu">inverse.predict</span>(m0, <span class="fu">c</span>(<span class="dv">91</span>, <span class="dv">89</span>, <span class="dv">87</span>, <span class="dv">93</span>, <span class="dv">90</span>))</span> -<span id="cb7-2"><a href="#cb7-2" tabindex="-1"></a><span class="co">#> $Prediction</span></span> -<span id="cb7-3"><a href="#cb7-3" tabindex="-1"></a><span class="co">#> [1] 43.93983</span></span> -<span id="cb7-4"><a href="#cb7-4" tabindex="-1"></a><span class="co">#> </span></span> -<span id="cb7-5"><a href="#cb7-5" tabindex="-1"></a><span class="co">#> $`Standard Error`</span></span> -<span id="cb7-6"><a href="#cb7-6" tabindex="-1"></a><span class="co">#> [1] 0.796884</span></span> -<span id="cb7-7"><a href="#cb7-7" tabindex="-1"></a><span class="co">#> </span></span> -<span id="cb7-8"><a href="#cb7-8" tabindex="-1"></a><span class="co">#> $Confidence</span></span> -<span id="cb7-9"><a href="#cb7-9" tabindex="-1"></a><span class="co">#> [1] 1.632343</span></span> -<span id="cb7-10"><a href="#cb7-10" tabindex="-1"></a><span class="co">#> </span></span> -<span id="cb7-11"><a href="#cb7-11" tabindex="-1"></a><span class="co">#> $`Confidence Limits`</span></span> -<span id="cb7-12"><a href="#cb7-12" tabindex="-1"></a><span class="co">#> [1] 42.30749 45.57217</span></span></code></pre></div> +<div class="sourceCode" id="cb7"><pre class="sourceCode r"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a><span class="fu">inverse.predict</span>(m0, <span class="fu">c</span>(<span class="dv">91</span>, <span class="dv">89</span>, <span class="dv">87</span>, <span class="dv">93</span>, <span class="dv">90</span>))</span> +<span id="cb7-2"><a href="#cb7-2" aria-hidden="true" tabindex="-1"></a><span class="co">#> $Prediction</span></span> +<span id="cb7-3"><a href="#cb7-3" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 43.93983</span></span> +<span id="cb7-4"><a href="#cb7-4" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb7-5"><a href="#cb7-5" aria-hidden="true" tabindex="-1"></a><span class="co">#> $`Standard Error`</span></span> +<span id="cb7-6"><a href="#cb7-6" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 0.796884</span></span> +<span id="cb7-7"><a href="#cb7-7" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb7-8"><a href="#cb7-8" aria-hidden="true" tabindex="-1"></a><span class="co">#> $Confidence</span></span> +<span id="cb7-9"><a href="#cb7-9" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 1.632343</span></span> +<span id="cb7-10"><a href="#cb7-10" aria-hidden="true" tabindex="-1"></a><span class="co">#> </span></span> +<span id="cb7-11"><a href="#cb7-11" aria-hidden="true" tabindex="-1"></a><span class="co">#> $`Confidence Limits`</span></span> +<span id="cb7-12"><a href="#cb7-12" aria-hidden="true" tabindex="-1"></a><span class="co">#> [1] 42.30749 45.57217</span></span></code></pre></div> <h2 id="reference">Reference</h2> <p>You can use the R help system to view documentation, or you can have a look at the <a href="https://pkgdown.jrwb.de/chemCal/">online |