aboutsummaryrefslogtreecommitdiff
path: root/man
diff options
context:
space:
mode:
authorranke <ranke@5fad18fb-23f0-0310-ab10-e59a3bee62b4>2006-05-16 19:49:08 +0000
committerranke <ranke@5fad18fb-23f0-0310-ab10-e59a3bee62b4>2006-05-16 19:49:08 +0000
commit49eff36596275b1dbb5e07c97fb93db182baa27e (patch)
treedee5073b7ef48bee7e6fa9fc593408f2ad3d2736 /man
parent0973370a6e27952df81aaae2a05104195e3bf633 (diff)
- Took loq and lod apart again. lod is now an implemantation of Massart, loq is
an own variant of DIN 32645 (relative error on x axis). - Partly make functions work on models where x and y are named different from "x" and "y" (loq to be done). git-svn-id: http://kriemhild.uft.uni-bremen.de/svn/chemCal@11 5fad18fb-23f0-0310-ab10-e59a3bee62b4
Diffstat (limited to 'man')
-rw-r--r--man/inverse.predict.Rd16
-rw-r--r--man/lod.Rd55
-rw-r--r--man/loq.Rd76
3 files changed, 110 insertions, 37 deletions
diff --git a/man/inverse.predict.Rd b/man/inverse.predict.Rd
index 8c2be9c..5be0250 100644
--- a/man/inverse.predict.Rd
+++ b/man/inverse.predict.Rd
@@ -57,14 +57,14 @@
p. 200
}
\examples{
-data(massart97ex3)
-attach(massart97ex3)
-yx <- split(y,factor(x))
-s <- round(sapply(yx,sd),digits=2)
-w <- round(1/(s^2),digits=3)
-weights <- w[factor(x)]
-m <- lm(y ~ x,w=weights)
+ data(massart97ex3)
+ attach(massart97ex3)
+ yx <- split(y,factor(x))
+ s <- round(sapply(yx,sd),digits=2)
+ w <- round(1/(s^2),digits=3)
+ weights <- w[factor(x)]
+ m <- lm(y ~ x,w=weights)
-inverse.predict(m,15,ws = 1.67)
+ inverse.predict(m,15,ws = 1.67)
}
\keyword{manip}
diff --git a/man/lod.Rd b/man/lod.Rd
index e6ce345..15f9603 100644
--- a/man/lod.Rd
+++ b/man/lod.Rd
@@ -3,14 +3,9 @@
\alias{lod.lm}
\alias{lod.rlm}
\alias{lod.default}
-\alias{loq}
-\alias{loq.lm}
-\alias{loq.rlm}
-\alias{loq.default}
-\title{Estimate a limit of detection (LOD) or quantification (LOQ)}
+\title{Estimate a limit of detection (LOD)}
\usage{
- lod(object, \dots, alpha = 0.05, k = 1, n = 1, w = "auto")
- loq(object, \dots, alpha = 0.05, k = 3, n = 1, w = "auto")
+ lod(object, \dots, alpha = 0.05, beta = 0.05)
}
\arguments{
\item{object}{
@@ -19,40 +14,42 @@
with model formula \code{y ~ x} or \code{y ~ x - 1},
optionally from a weighted regression.
}
- \item{alpha}{
- The error tolerance for the prediction of x values in the calculation.
- }
\item{\dots}{
Placeholder for further arguments that might be needed by
future implementations.
}
- \item{k}{
- The inverse of the maximum relative error tolerated at the
- desired LOD/LOQ.
- }
- \item{n}{
- The number of replicate measurements for which the LOD/LOQ should be
- specified.
+ \item{alpha}{
+ The error tolerance for the decision limit (critical value).
}
- \item{w}{
- The weight that should be attributed to the LOD/LOQ. Defaults
- to one for unweighted regression, and to the mean of the weights
- for weighted regression. See \code{\link{massart97ex3}} for
- an example how to take advantage of knowledge about the variance function.
+ \item{beta}{
+ The error tolerance beta for the detection limit.
}
}
\value{
- The estimated limit of detection for a model used for calibration.
-}
+ A list containig the corresponding x and y values of the estimated limit of
+ detection of a model used for calibration. }
\description{
- A useful operationalisation of a lower limit L of a measurement method is
- simply the solution of the equation
- \deqn{L = k c(L)}{L = k * c(L)}
- where c(L) is half of the lenght of the confidence interval at the limit L.
+ The decision limit (German: Nachweisgrenze) is defined as the signal or
+ analyte concentration that is significantly different from the blank signal
+ with a first order error alpha (one-sided significance test).
+ The detection limit, or more precise, the minimum detectable value
+ (German: Erfassungsgrenze), is then defined as the signal or analyte
+ concentration where the probability that the signal is not detected although
+ the analyte is present (type II or false negative error), is beta (also a
+ one-sided significance test).
+}
+\references{
+ J. Inczedy, T. Lengyel, and A.M. Ure (2002) International Union of Pure and
+ Applied Chemistry Compendium of Analytical Nomenclature: Definitive Rules.
+ Web edition.
}
\examples{
data(din32645)
m <- lm(y ~ x, data = din32645)
- lod(m)
+ # The decision limit (critical value) is obtained by using beta = 0.5:
+ lod(m, alpha = 0.01, beta = 0.5) # approx. Nachweisgrenze in Dintest 2002
+ lod(m, alpha = 0.01, beta = 0.01)
+ # In the latter case (Erfassungsgrenze), we get a slight deviation from
+ # Dintest 2002 test data.
}
\keyword{manip}
diff --git a/man/loq.Rd b/man/loq.Rd
new file mode 100644
index 0000000..1030399
--- /dev/null
+++ b/man/loq.Rd
@@ -0,0 +1,76 @@
+\name{loq}
+\alias{loq}
+\alias{loq.lm}
+\alias{loq.rlm}
+\alias{loq.default}
+\title{Estimate a limit of quantification (LOQ)}
+\usage{
+ loq(object, \dots, alpha = 0.05, k = 3, n = 1, w = "auto")
+}
+\arguments{
+ \item{object}{
+ A univariate model object of class \code{\link{lm}} or
+ \code{\link[MASS:rlm]{rlm}}
+ with model formula \code{y ~ x} or \code{y ~ x - 1},
+ optionally from a weighted regression.
+ }
+ \item{alpha}{
+ The error tolerance for the prediction of x values in the calculation.
+ }
+ \item{\dots}{
+ Placeholder for further arguments that might be needed by
+ future implementations.
+ }
+ \item{k}{
+ The inverse of the maximum relative error tolerated at the
+ desired LOQ.
+ }
+ \item{n}{
+ The number of replicate measurements for which the LOQ should be
+ specified.
+ }
+ \item{w}{
+ The weight that should be attributed to the LOQ. Defaults
+ to one for unweighted regression, and to the mean of the weights
+ for weighted regression. See \code{\link{massart97ex3}} for
+ an example how to take advantage of knowledge about the
+ variance function.
+ }
+}
+\value{
+ The estimated limit of quantification for a model used for calibration.
+}
+\description{
+ A useful operationalisation of a limit of quantification is simply the
+ solution of the equation
+ \deqn{L = k c(L)}{L = k * c(L)}
+ where c(L) is half of the length of the confidence interval at the limit L as
+ estimated by \code{\link{inverse.predict}}. By virtue of this formula, the
+ limit of detection is the x value, where the relative error
+ of the quantification with the given calibration model is 1/k.
+}
+\examples{
+ data(massart97ex3)
+ attach(massart97ex3)
+ m0 <- lm(y ~ x)
+ loq(m0)
+
+ # Now we use a weighted regression
+ yx <- split(y,factor(x))
+ s <- round(sapply(yx,sd),digits=2)
+ w <- round(1/(s^2),digits=3)
+ weights <- w[factor(x)]
+ mw <- lm(y ~ x,w=weights)
+ loq(mw)
+
+ # In order to define the weight at the loq, we can use
+ # the variance function 1/y for the model
+ mwy <- lm(y ~ x, w = 1/y)
+
+ # Let's do this with one iteration only
+ loq(mwy, w = 1 / predict(mwy,list(x = loq(mwy))))
+
+ # We can get better by doing replicate measurements
+ loq(mwy, n = 3, w = 1 / predict(mwy,list(x = loq(mwy))))
+}
+\keyword{manip}

Contact - Imprint